Ο Άλμπερτ Αϊνστάιν (Albert Einstein, τονισμός στα Γερμανικά: Άλμπερτ Άινσταϊν), που από πολλούς θεωρείται ως ο μεγαλύτερος φυσικός του 20ού αιώνα, γεννήθηκε στο Ουλμ (Ulm) της Γερμανίας στις 14 Μαρτίου του 1879 και πέθανε στις 18 Απριλίου του 1955 στο Πρίνστον (Princeton) του Νιού Τζέρσεϊ (New Jersey) των ΗΠΑ σε ηλικία 75 ετών. Είναι ο θεμελιωτής της Θεωρίας της Σχετικότητας.
To 1905 δημοσίευσε τέσσερα άρθρα στο επιστημονικό περιοδικό Χρονικά της Φυσικής (Annalen der Physik) (τόμος 17). Στο πρώτο από αυτά έδωσε την εξήγηση του φωτοηλεκτρικού φαινομένου, για την οποία του απονεμήθηκε το βραβείο Νόμπελ το 1921.
Στηρίχθηκε στην υπόθεση της κβάντωσης η οποία είχε εισαχθεί μερικά χρόνια νωρίτερα από τον Πλανκ (Planck) για ερμηνεία της ακτινοβολίας του μέλανος σώματος. Οι δύο αυτές εργασίες των Πλανκ και Αϊνστάιν αποτέλεσαν την αρχή της κβαντικής μηχανικής. Αργότερα ο Αϊνστάιν εναντιώθηκε στην θεωρία των κβάντα, γιατί δεν μπορούσε να πιστέψει ότι ο Θεός παίζει ζάρια με τον Κόσμο.
Στο τρίτο από τα άρθρα που δημοσίευσε το 1905 ο Αϊνστάιν διατύπωσε την ειδική θεωρία της σχετικότητας και στο τέταρτο έδειξε ότι από αυτήν συνάγεται ο διάσημος τύπος E = mc2 (γενική θεωρία της σχετικότητας) που δηλώνει τη δυνατότητα και την ισοδυναμία αλληλομετατροπής ενέργειας και μάζας, ορίζοντας έτσι, ως ενιαίο χώρο την υλοενέργεια. Αυτό σημαίνει πώς η ενέργεια που μπορεί να παράξει οτιδήποτε εξαρτάται από τη μάζα του. Τον Νοέμβριο του 1915, ο Αϊνστάιν παρουσίασε τη γενική θεωρία της σχετικότητας σε μία σειρά διαλέξεων ενώπιον της Πρωσσικής Ακαδημίας Επιστημών. Το 1919 κατά τη διάρκεια μίας ηλιακής έκλειψης ο Σερ Άρθουρ Έντινγκτον (Eddington) παρακολούθησε το φως αστέρων καθώς αυτοί περνούσαν κοντά από τον ήλιο. Οι μετρήσεις του συμφωνούσαν με τη θεωρία της σχετικότητας και το γεγονός αυτό έκανε τον Αϊνστάιν διάσημο.
Είχε υποσχεθεί στην σύζυγό Μιλέβα Μάριτζ του ότι αν του έδινε το διαζύγιο,θα της έδινε τα χρήματα που θα εξασφάλιζε από το βραβείο Νόμπελ για την ίδια αλλά και την ανατροφή των παιδιών τους.
Eκτός από την αγάπη του για την φυσική, αγαπούσε επίσης και τη μουσική καθώς έπαιζε βιολί.
Το 1952 του προτάθηκε η προεδρία του νεοσύστατου κράτους του Ισραήλ, την οποία αρνήθηκε για διάφορους λόγους.
Ειδική σχετικότητα
E = mc2
Η ειδική σχετικότητα είναι μια θεωρία της δομής του χωροχρόνου, την οποία εισήγαγε ο Άλμπερτ Άινσταϊν το 1905. Βασίζεται σε δύο αξιώματα τα οποία είναι αντίθετα με την κλασική μηχανική:
1. Οι νόμοι της φυσικής είναι οι ίδιοι για όλους τους παρατηρητές που βρίσκονται σε αδρανειακό σύστημα αναφοράς (αρχή σχετικότητας του Γαλιλαίου).
2. Η ταχύτητα του φωτός στο κενό είναι ίδια για όλους τους παρατηρητές, ανεξαρτήτως της σχετικής τους κίνησης ή της κίνησης της πηγής του φωτός.
Η θεωρία έχει ορισμένες συνέπειες. Κάποιες από αυτές είναι οι εξής:
• Διαστολή χρόνου: Τα κινούμενα ρολόγια γυρνάνε διαφορετικά από ένα στάσιμο ρολόι ενός παρατηρητή (σύμφωνα με την οποία προκύπτει το παράδοξο των διδύμων).
• Συστολή του μήκους: Τα αντικείμενα παρατηρούνται να μικραίνουν στην κατεύθυνση που κινούνται σε σχέση με τον παρατηρητή.
• Σχετικότητα της ταυτοχρονικότητας: Δύο γεγονότα που φαίνονται να συμβαίνουν ταυτόχρονα σε έναν παρατηρητή Α, δε θα συμβαίνουν ταυτόχρονα για έναν παρατηρητή Β, εάν ο Β κινείται σε σχέση με τον Α.
• Ισοδυναμία μάζας-ενέργειας: Από τη σχέση E = mc², η ενέργεια και η μάζα είναι ισοδύναμες.
Αυτές οι συνέπειες περιγράφονται από τους μετασχηματισμούς του Λόρεντζ.
Με βάση τη θεωρία της σχετικότητας εισάγεται και η έννοια της μάζας ηρεμίας. Σύμφωνα με την γενική θεωρία της σχετικότητας η αδράνεια ενός κινούμενου σώματος αυξάνεται καθώς αυξάνεται η ταχύτητά του. Μάζα ηρεμίας λοιπόν είναι η μάζα του σώματος όταν αυτό είναι ακίνητο.
Γενική σχετικότητα
Κύριο άρθρο: Γενική σχετικότητα
Η γενική σχετικότητα είναι μια θεωρία βαρύτητας που αναπτύχθηκε από τον Άινσταϊν την περίοδο 1907 - 1915.
Η ανάπτυξη της γενικής σχετικότητας ξεκίνησε με την αρχή της ισοδυναμίας, σύμφωνα με την οποία οι καταστάσεις επιταχυνόμενης κίνησης και ηρεμίας σε ένα βαρυτικό πεδίο (για παράδειγμα πάνω στην επιφάνεια της Γης) είναι ταυτόσημες. Το αποτέλεσμα της ιδέας αυτής είναι ότι η ελεύθερη πτώση είναι αδρανειακή κίνηση σε μη ευκλείδιο χώρο: Με άλλα λόγια, ένα αντικείμενο σε ελεύθερη πτώση, πέφτει επειδή αυτός είναι ο τρόπος με τον οποίο τα αντικείμενα κινούνται όταν δεν ασκείται πάνω τους δύναμη, αντί να πέφτει λόγω της δύναμης της βαρύτητας, όπως συμβαίνει στην κλασική μηχανική. Αυτό είναι ασύμβατο με την κλασική μηχανική και την ειδική σχετικότητα, επειδή σε αυτές τις θεωρίες αντικείμενα που κινούνται αδρανειακά δε μπορούν να επιταχύνουν το ένα σε σχέση με το άλλο, αλλά αντικείμενα σε ελεύθερη πτώση κάνουν ακριβώς αυτό. Για να λυθεί η δυσκολία, ο Άινσταϊν πρότεινε αρχικά πως ο χωροχρόνος είναι καμπυλωμένος. Το 1915 ανακοίνωσε τις πεδιακές εξισώσεις Άινσταϊν, οι οποίες συσχετίζουν την καμπύλωση του χωροχρόνου σε σχέση με τη μάζα, την ενέργεια και την ορμή μέσα σε αυτόν.
Σύμφωνα με τη γενική θεωρία της σχετικότητας:
• Ο χρόνος περνά διαφορετικά σε χαμηλότερα βαρυτικά δυναμικά. Το φαινόμενο αυτό ονομάζεται βαρυτική διαστολή του χρόνου.
• Οι τροχιές μεταβάλλονται με τρόπο μη αναμενόμενο από τη θεωρία του Νεύτωνα για τη βαρύτητα.
• Ακόμα και οι ακτίνες του φωτός (όπου τα φωτόνια δεν έχουν μάζα) αλλάζουν πορεία παρουσία ενός βαρυτικού πεδίου.
• Ερμηνεύει η διαστολή του Σύμπαντος, και τα μακρινά μέρη του απομακρύνονται από εμάς σχεδόν με την ταχύτητα του φωτός. Αυτό δεν αντιτίθεται στην ειδική σχετικότητα, καθώς είναι το ίδιο το Σύμπαν το οποίο διαστέλλεται.
Ειδική σχετικότητα
Η σχετικοποίηση του χρόνου υπήρξε ένα από τα σημαντικότερα συμπεράσματα της ειδικής σχετικότητας. Ο χρόνος όχι μόνο μπορει να κυλά με διαφορετικο ρυθμό για δυο παρατηρητές, αλλά και δυο γεγονότα που φαίνονται ταυτόχρονα σε έναν παρατηρητή μπορεί να μην είναι για έναν άλλον.
Η ειδική σχετικότητα είναι η θεωρία που διατυπώθηκε απο τον Άλμπερτ Αϊνστάιν το 1905, και η οποία συμπληρώνει τους νόμους κίνησης του Νεύτωνα, ώστε να ισχύουν και σε ταχύτητες κοντά στην ταχύτητα του φωτός. Η ειδική θεωρία της σχετικότητας προκύπτει απο την ικανοποίηση της γενικευμένης αρχής της σχετικότητας και της αρχής του Αϊνστάιν, σύμφωνα με την οποία η ταχύτητα του φωτός είναι ίδια για όλους τους αδρανειακούς παρατηρητές, ανεξάρτητα απο τη σχετική τους ταχύτητα. Σύμφωνα με την γενικευμένη αρχή της σχετικότητας, οι φυσικοί νόμοι που ισχύουν σε ένα αδρανειακό σύστημα αναφοράς (δηλαδή ένα μη επιταχυνόμενο σύστημα), έχουν την ίδια μορφή σε οποιοδήποτε άλλο αδρανειακό σύστημα αναφοράς.
Πριν τον Αϊνστάιν, μια πρώτη μορφή της αρχής της σχετικότητας είχε διατυπωθεί ήδη από τον Γαλιλαίο και στη συνέχεια ενσωματώθηκε στη Νευτώνεια σύνθεση. Η αρχή αυτή δήλωνε ότι όλοι οι νόμοι της μηχανικής πρέπει να έχουν την ίδια μορφή σε όλα τα αδρανειακά συστήματα αναφοράς. Η μετάβαση από το ένα αδρανειακό σύστημα στο άλλο γινόταν με ένα ορισμένο είδος μετασχηματισμών συντεταγμένων, που ονομάστηκαν αργότερα μετασχηματισμοί του Γαλιλαίου ή αλλιώς, νόμος πρόσθεσης ταχυτήτων. Ενώ οι νόμοι της μηχανικής συμμορφώνονταν με τον μετασχηματισμό αυτό (ήταν αναλλοίωτοι κατά την εφαρμογή του), οι νόμοι του Ηλεκτρομαγνητισμού, και ειδικά ο νόμος για την σταθερότητα και παγκοσμιότητα της ταχύτητας του φωτός, τον παραβίαζαν. Ο Αϊνστάιν αντικατέστησε τους μετασχηματισμούς του Γαλιλαίου με ένα νέο σύνολο μετασχηματισμών, τους μετασχηματισμούς του Λόρεντζ, και διατύπωσε την Γενικευμένη αρχή της Σχετικότητας, σύμφωνα με την οποία όλοι οι νόμοι της Φύσης (μηχανικής, ηλεκτρομαγνητισμού και όποιοι άλλοι) είναι αναλλοίωτοι κάτω από τους νέους αυτούς μετασχηματισμούς και (πρέπει να) παίρνουν την ίδια μορφή σε όλα τα αδρανειακά συστήματα.
Η ειδική θεωρία της σχετικότητας προβλέπει φαινόμενα που αντίκεινται στην καθημερινή μας εμπειρία, ωστόσο έχει επιβεβαιωθεί πειραματικά σε σειρά πειραμάτων, και επιβεβαιώνεται καθημερινά στους σύγχρονους επιταχυντές σωματιδίων.
Η ειδική σχετικότητα συμπληρώθηκε αργότερα από τη γενική σχετικότητα, διατυπωμένη επίσης από τον Αϊνστάιν, που μελετούσε τη βαρύτητα με τον σχετικιστικό φορμαλισμό. Με τη διατύπωση της γενικής σχετικότητας, η Νευτώνεια βαρύτητα έγινε πλέον υποπερίπτωση της σχετικιστικής βαρύτητας, και η κλασική Φυσική ολοκληρώθηκε ως εννοιολογικό πλαίσιο.
Αδρανειακό σύστημα αναφοράς
Ένα αδρανειακό σύστημα αναφοράς είναι ένα σύστημα στο οποίο ισχύουν ο πρώτος και δεύτερος νόμος του Νεύτωνα για την κίνηση των σωμάτων.
Ως εκ τούτου, σε ένα αδρανειακό σύστημα αναφοράς, ένα σώμα επιταχύνεται μόνο όταν μια δύναμη εφαρμόζεται πάνω του, και (σύμφωνα με τον πρώτο νόμο του Νεύτωνα για την κίνηση των σωμάτων), αν δεν εφαρμόζεται πάνω του καμία δύναμη, ένα σώμα που έχει μηδενική ταχύτητα θα συνεχίσει να ηρεμεί και ένα σώμα που κινείται θα συνεχίσει να κινείται με σταθερή ταχύτητα και ευθύγραμμα.
] Ισοδυναμία αδρανειακών συστημάτων αναφοράς
Μια θεμελιώδης αρχή της φυσικής είναι η ισοδυναμία των αδρανειακών συστημάτων αναφοράς. Στην ορολογία της Φυσικής, η ισοδυναμία αυτή σημαίνει ότι οι παρατηρητές που είναι μέσα σε ένα απομονωμένο σύστημα που κινείται ευθύγραμμα ομαλά δεν μπορούν να ανιχνεύσουν την κίνησή του με κανένα πείραμα που γίνεται αποκλειστικά μέσα στο απομονωμένο σύστημα.
Εν αντιθέσει, τα σώματα δέχονται τις λεγόμενες δυνάμεις αδράνειας σε ένα μη αδρανειακό σύστημα αναφοράς, δηλαδή δυνάμεις που είναι αποτέλεσμα της επιτάχυνσης του ίδιου του συστήματος αναφοράς και όχι πραγματικές δυνάμεις που δρουν πάνω στα σώματα. Παραδείγματα δυνάμεων αδράνειας είναι η κεντρομόλος δύναμη και η δύναμη Κοριόλις σε ένα στρεφόμενο σύστημα αναφοράς. Γι' αυτό, οι επιστήμονες που είναι μέσα σε ένα απομονωμένο σύστημα αναφοράς το οποίο στρέφεται, οπότε επιταχύνεται μπορούν να μετρήσουν την επιτάχυνση τους παρατηρώντας τις δυνάμεις αδράνειας στα σώματα εντός του συστήματος
Αδρανειακά συστήματα στην κλασσική μηχανική
Η Κλασσική μηχανική παραδέχεται την ισοδυναμία όλων των αδρανειακών συστημάτων αναφοράς και κάνει ακόμα μία παραδοχή, ότι ο χρόνος περνάει με τον ίδιο ρυθμό σε όλα τα συστήματα αναφοράς. Αυτό ανταποκρίνεται στην θεωρία του Νεύτωνα του απόλυτου χώρου και χρόνου. Με αυτές τις δύο παραδοχές οι συντεταγμένες του ίδιου γεγονότος (ένα σημείο στο χώρο και το χρόνο) περιγράφονται σε δύο αδρανειακά συστήματα αναφοράς με τη σχέση απ'τους μετασχηματισμούς Γαλιλαίου
όπου και t0 αναπαριστούν τη μετατόπιση από την αρχή του χώρου και του χρόνου, και είναι η σχετική ταχύτητα των δύο αδρανειακών συστημάτων αναφοράς. Με τους μετασχηματισμούς Γαλιλαίου το χρονικό διάστημα (t2 − t1) μεταξύ δύο γεγονότων είναι το ίδιο για όλα τα αδρανεικά συστήματα αναφοράς και η απόσταση μεταξύ δύο ταυτόχρονων γεγονότων (ή, ισοδύναμα, το μήκος οποιουδήποτε αντικειμένου, ) είναι επίσης το ίδιο.
Η θεωρία της ειδικής σχετικότητας του Αϊνστάιν
Η Ειδική θεωρία της σχετικότητας του Άλμπερτ Αϊνστάιν παρομοίως παραδέχεται την ισοδυναμία όλων των αδρανειακών συστημάτων αναφοράς, αλλά κάνει μια διαφορετική παραδοχή από την παραπάνω, δηλαδή ότι η ταχύτητα του φωτός είναι η ίδια όταν μετράται σε όλα τα αδρανεικά συστήματα αναφοράς. Αυτή η δεύτερη παραδοχή οδηγεί σε φαινόμενα που έρχονται σε αντίθεση με αυτά που αντιλαμβανόμαστε που όμως έχουν αποδειχθεί πειραματικά, όπως:
• Συστολή του χρόνου (κινούμενα ρολόγια χτυπάν πιο αργά)
• Συστολή του μήκους (κινούμενα αντικείμενα έχουν πιο μικρό μήκος στην κατεύθυνση της κίνησης)
• Σχετικότητα του ταυτόχρονου (Ταυτόχρονα γεγονότα σε ένα αδρανειακό σύστημα αναφοράς δεν είναι ταυτόχρονα σε ένα αδρανειακό σύστημα αναφοράς που κινείται σε σχέση με το πρώτο).
Τα φαινόμενα αυτά εκφράζονται μαθηματικά με τους μετασχηματισμούς Lorentz:
όπου η μετατόπιση απ' την αρχή του χώρου και του χρόνου αγνοείται, η σχετική ταχύτητα θεωρείται στη κατεύθυνση του άξονα x και ο παράγοντας γ είναι ορισμένος ως
Οι μετασχηματισμοί Lorentz είναι ισοδύναμε με τους μετασχηματισμούς Γαλιλαίου στο όριο ή, ισοδύναμα, (χαμηλές ταχύτητες).
Με τους μετασχηματισμούς Lorentz, ο χρόνος και η απόσταση μεταξύ δύο γεγονότων μπορεί να ποικίλει στα διάφορα αδρανειακά συστήματα αναφοράς. Παρόλα αυτά, οι η μονόμετρη απόσταση s2 μεταξύ δύο γεγονότων είναι ίδια για όλα τα αδρανειακά συστήματα αναφοράς
όπου c είναι η ταχύτητα του φωτός. Από αυτήν την σκοπιά, η ταχύτητα του φωτός είναι μόνο κατά σύμπτωση μια ιδιότητα του φωτός, παρά μια ιδιότητα του χωροχρόνου, ένας παράγοντας μετατροπής μεταξύ συμβατικών μονάδων χρόνου (όπως τα δευτερόλεπτα και μονάδων μήκους (όπως το μέτρο).
Η γενική θεωρία της σχετικότητας του Αϊνστάιν
Η Γενική θεωρία της σχετικότητας τροποποιεί τη διάκριση μεταξύ των κατ' όνομα "αδρανειακών" και "μη αδρανειακών" αντικαθιστώντας την "επίπεδη" Ευκλείδια Γεωμετρία της ειδικής σχετικότητας με μια καμπύλη, μη Ευκλείδια μετρική. Στη γενική σχετικότητα, η αρχή της αδράνειας αντικαθίσταται με την αρχή της γεωδαιτικής κίνησης, όπου τα αντικείμενα κινούνται με τον τρόπο που επιτάσσει η καμπύλωση του χωροχρόνου. Ως αποτέλεσμα αυτής της καμπύλωσης, δεν είναι δεδομένο στη γενική σχετικότητα ότι τα αδρανειακά αντικείμενα που κινούνται με έναν συγκεκριμένο ρυθμό το ένα ως προς το άλλο θα συνεχίσουν να κινούνται έτσι. Αυτό το φαινόμενο της γεωδαιτικής απόκλισης σημαίνει ότι τα αδρανειακά συστήματα αναφοράς δεν υπάρχουν γενικά, όπως γίνεται στη Νεωτώνεια μηχανική ή στην ειδική σχετικότητα. Αυτό μπορεί γίνει αντιληπτό αν αναλύσουμε την βαρύτητα και στις δύο θεωρίες. Ντετερμινιστικά η βαρύτητα εξηγείται με την έλξη των δύο σωμάτων η οποία είναι ανάλογη των μαζών τους. Σχετικιστικά η βαρύτητα εξηγείται με την καμπύλωση του χωροχρόνου π.χ. εάν τεντώσουμε ένα σεντόνι και ρίξουμε μια μπάλα του μπόουλινγκ και μπάλες του μπιλιάρδου οι δεύτερες θα κολλήσουν στην πρώτη χωρίς να υπάρχει προφανής έλξη αλλά εξαιτίας της καμπύλωσης του σεντονιού (χώρου). Οι μεγαλύτερες μάζες δηλαδή απλά καμπυλώνουν το χωροχρόνο περισσότερο και έτσι προκύπτει η έλξη.
Παρόλα αυτά, η γενική σχετικότητα περιορίζεται στην ειδική σχετικότητα σε ικανοποιητικά μικρές περιοχές του χωροχρόνου, όπου τα φαινόμενα καμπύλωσης είναι μειωμένης σημασίας και τα αρχικά αξιώματα των αδρανειακών συστημάτων μπορούν να εφαρμοστούν. Ως επακόλουθο, η σύγχρονη ειδική σχετικότητα περιγράφεται πλέον ως μια “θεωρία περιορισμένης εμβέλειας”, με αυτό να αναφέρεται βέβαια στις εφαρμογές της παρά στην προέλευσή της.
Οι καθημερινές μας εμπειρίες για την ταχύτητα κίνησης διαφόρων σωμάτων περιορίζονται σε ταχύτητες πολύ μικρότερες απ’ εκείνη του φωτός. Η Νευτώνεια μηχανική και οι πρώτες ιδέες για το χωροχρόνο αποσκοπούσαν στην ερμηνεία της κίνησης των σωμάτων αυτών. Ο στόχος αυτός ήρθε σε πέρας με μεγάλη επιτυχία ερμηνεύοντας πράγματι ένα πολύ μεγάλο φάσμα φαινομένων. Η Νευτώνεια μηχανική εξηγεί με μεγάλη επιτυχία φαινόμενα χαμηλών ταχυτήτων, αλλά αποτυγχάνει και δεν μπορεί να εξηγήσει φαινόμενα που γίνονται σε ταχύτητες πλησίον εκείνης του φωτός. Πειραματικά έχει αποδειχτεί ότι η ισχύς της Νευτώνειας μηχανικής είναι περιορισμένη.
Σύμφωνα με τη θεωρία της σχετικότητας του Einstein μπορούμε να προβλέψουμε τις πειραματικές παρατηρήσεις για ταχύτητες από u = 0 έως εκείνες που πλησιάζουν την ταχύτητα του φωτός. Η Νευτώνεια Μηχανική, που θεωρούταν επί δύο αιώνες ότι είναι η γενική θεωρία, αποτελεί ειδική περίπτωση της γενικότερης θεωρίας του Einstein, της θεωρίας δηλαδή της ειδικής σχετικότητας.
Στο θέμα μας εδώ θα δώσουμε έμφαση μόνο στις επιπτώσεις της ειδικής θεωρίας της σχετικότητας του Einstein όσο αφορά το χρόνο (παράδοξο διδύμων).
Η αρχή της σχετικότητας
Για να περιγράψουμε ένα φυσικό γεγονός πρέπει να ορίσουμε ένα σύστημα αναφοράς . Είναι γνωστό ότι απόλυτη ακινησία ή κίνηση δεν εννοείται. Ένα σώμα λέμε ότι κινείται, όταν αλλάζει θέση σε σχέση με ένα σύστημα συντεταγμένων το οποίο εμείς θεωρούμε ακίνητο (σύστημα αναφοράς). Εάν πάρουμε ένα σώμα που δεν επιδρά με κανένα άλλο σώμα, τότε υπάρχει κάποιο σύστημα αναφοράς, ως προς το οποίο το σώμα αυτό είτε είναι ακίνητο είτε κινείται ευθύγραμμα ομαλά. Το σύστημα αυτό το ονομάζουμε αδρανειακό σύστημα αναφοράς. Ενα τέτοιο αδρανειακό σύστημα είναι για παράδειγμα το σύστημα των μακρινών αστέρων, αφού η αλληλεπίδραση ενός σώματος με αυτά θεωρείται αμελητέα.
Προτού μελετήσουμε ένα απ’ τ’ αποτελέσματα της ειδικής θεωρίας της σχετικότητας, εκείνο της σχετικότητας του χρόνου, πρέπει να καταλάβουμε πως περιγράφεται ένα γεγονός, από έναν παρατηρητή που βρίσκεται σ’ ένα αδρανειακό σύστημα αναφοράς. Γνωρίζουμε απ’ την ίδια θεωρία ότι για να περιγράψουμε ένα γεγονός χρειαζόμαστε 4 συντεταγμένες, 3 για το χώρο (μήκος, πλάτος, ύψος) και μια για το χρόνο (χωροχρόνος). Παρατηρητές που βρίσκονται σε διαφορετικά αδρανειακά συστήματα αναφοράς θα περιγράψουν το γεγονός με διαφορετικές συντεταγμένες χωροχρόνου. Υποθέστε δύο παρατηρητές Α, και Β σε δύο διαφορετικές κορυφές με συγχρονισμένα τα ρολόγια τους. Ο παρατηρητής Α κάποια χρονική στιγμή ( t = x) στέλνει ένα σήμα φωτός και καταγράφεται από το ρολόι του. Επειδή το φώς δε φτάνει “ακαριαία” στον παρατηρητή Β αυτός το καταγράφει με μία καθυστέρηση ίση με r / c, όπου r είναι η απόσταση των δύο κορυφών και c η ταχύτητα του φωτός. Ο χρόνος αυτός είναι πάρα μα πάρα πολύ μικρός αλλά πάντοτε πεπερασμένος, συνεπώς και μετρήσιμος. Επομένως για να είναι συγχρονισμένο το δεύτερο ρολόι πρέπει να δείχνει χρόνο ίσο με r/c τη στιγμή που θα φτάσει το σήμα σ’ αυτόν. Καθώς προχωράμε στο θέμα μας θα παρατηρήσουμε ότι τ’ αποτελέσματα αυτά της θεωρίας του Einstein στη σχετική κίνηση βρίσκονται σε άμεση αντίθεση με τις απόψεις που έχουμε για το χώρο αλλά και το χρόνο. Θα δούμε ότι : “Η απόσταση ανάμεσα σε δυο σημεία καθώς και το χρονικό διάστημα ανάμεσα σε δυο γεγονότα εξαρτάται απ’ το σύστημα αναφοράς στο οποίο γίνεται η μέτρηση, δεν υπάρχουν δηλαδή έννοιες του απόλυτου μήκους ή απόλυτου χρόνου”.
Η σχετικότητα του χρόνου
Είδαμε ότι παρατηρητές που βρίσκονται σε διαφορετικά αδρανειακά συστήματα θα βρίσκουν πάντοτε κατά τις μετρήσεις διαφορετικές τιμές για το χρονικό διάστημα που διέρρευσε μεταξύ δύο συμβάντων. Αυτό μπορούμε να το καταλάβουμε καλύτερα εάν θεωρήσουμε ένα βαγόνι που κινείται προς τα δεξιά με ταχύτητα u (σχήμα 1.). Το εσωτερικό της οροφής του βαγονιού έχει έναν καθρέπτη και ο παρατηρητής Α’ ακίνητος ως προς το βαγόνι κρατά ένα λέιζερ σε απόσταση d απ’ τον καθρέπτη. Σε μια στιγμή το λέιζερ εκπέμπει προς την κατεύθυνση του καθρέπτη ένα παλμό φωτός (γεγονός 1). Μετά από λίγο αφού ανακλαστεί στον καθρέπτη επιστρέφει πίσω στο λέιζερ (γεγονός 2). Ο παρατηρητής Α’ έχει ένα ρολόι και μετράει το χρονικό διάστημα Δt’ που διέρρευσε ανάμεσα στα δύο γεγονότα. Γνωρίζουμε ότι η ταχύτητα του παλμού του φωτός είναι c. Επομένως για να βρούμε το χρόνο ώσπου το φως να μεταβεί απ’ το λέιζερ στον καθρέπτη και να επιστρέψει στο λέιζερ, θα χρησιμοποιήσουμε τον τύπο της ταχύτητας,
(1)
όπου :
u = ταχύτητα
s = διανυθείσα απόσταση
t = χρόνος
αντικαθιστώντας και λύνοντας ως προς t βρίσκουμε :
(2)
Βασικό να σημειώσουμε ότι ο παρατηρητής Α’ χρησιμοποίησε ένα μόνο ρολόι που είναι ακίνητο (βρίσκεται στο ίδιο σημείο του συστήματος αναφοράς του κινούμενου οχήματος).
Θεωρούμε τώρα τα ίδια γεγονότα αλλά από τη σκοπιά του παρατηρητή Β’ που βρίσκεται στο έδαφος ακίνητος. Σύμφωνα με τον παρατηρητή Β’ ο καθρέπτης και το λέιζερ κινούνται προς τα δεξιά με ταχύτητα u μαζί με το τραίνο. Μέχρι τη στιγμή που ο παλμός θα φτάσει στον καθρέπτη, ό καθρέπτης θα έχει κινηθεί προς τα δεξιά κατά μια απόσταση ίση με από (1) και (2)
(3)
Δt = Το χρονικό διάστημα που κατά τον παρατηρητή Β απαιτείται ώσπου ο παλμός του φωτός να φτάσει απ’ το λέιζερ στον καθρέπτη και να επιστρέψει στο λέιζερ.
Συγκρίνοντας τα δύο σχήματα θα διαπιστώσουμε ότι κατά τον παρατηρητή Β’ η διαδρομή του παλμού είναι μεγαλύτερη απ’ εκείνη που νομίζει ο παρατηρητής Α’ !
Σύμφωνα με το 2ο αξίωμα της σχετικότητας και οι δύο παρατηρητές πρέπει να μετρούν την ίδια ταχύτητα φωτός c. Επειδή κατά τον παρατηρητή Β’ η διαδρομή του φωτός είναι μεγαλύτερη, τότε και το χρονικό διάστημα Δt που μετράει στο ακίνητο σύστημα πρέπει να είναι μεγαλύτερο από το χρονικό διάστημα Δt’ που μετράει ο παρατηρητής Α’ στο κινούμενο σύστημα.
Για να βρούμε τη σχέση ανάμεσα στα δύο χρονικά διαστήματα θεωρούμε το ορθογώνιο τρίγωνο (σχήμα 3.) Εφαρμόζοντας το Πυθαγόρειο θεώρημα βρίσκουμε :
(4)
Λύνοντας ως προς Δt βρίσκουμε :
(5)
Βάση της (2) η (5) γίνεται :
(6)
Τα δύο γεγονότα που παρατηρεί ο Β’ συμβαίνουν σε δύο διαφορετικά σημεία του χώρου και για να μετρήσει το Δt, πρέπει να χρησιμοποιήσει δύο συγχρονισμένα ρολόγια που βρίσκονται σε δύο διαφορετικά σημεία στο σύστημα αναφοράς του. Βλέπουμε από την εξίσωση (6) ότι το Δt του παρατηρητή Α στο ακίνητο σύστημα αναφοράς είναι μεγαλύτερο από το Δt’ του Β στο κινούμενο σύστημα. Δηλαδή :
Δt > Δt’
Το φαινόμενο αυτό λέγεται διαστολή χρόνου. Το Δt’ λέγεται ιδιόχρονος.
Η διαστολή του χρόνου είναι ένα φαινόμενο που έχει επιβεβαιωθεί πειραματικά .
Αφού εξηγήσαμε το φαινόμενο της διαστολής του χρόνου ερχόμαστε στην ανθρώπινη εφαρμογή του με το υποθετικό πείραμα του ταξιδιού των διδύμων.
Το παράδοξο των διδύμων
Ένα πολύ ενδιαφέρον αποτέλεσμα της διαστολής το χρόνου είναι το λεγόμενο παράδοξο των διδύμων.
Θεωρούμε δύο 20άχρονους δίδυμους το Σταμάτη και το Γρηγόρη. Ο Γρηγόρης μπαίνει σ’ ένα διαστημόπλοιο το έτος 2008 και ταξιδεύει σ’ ένα μακρινό αστέρι που απέχει απ’ τη Γη 30 έτη φωτός με ταχύτητα πολύ κοντά σ’ εκείνη του φωτός. Αφού φτάσει στον προορισμό του επιστρέφει αμέσως στη Γη με την ίδια ακριβώς ταχύτητα. Όταν φτάνει στη Γη εκπλήσσεται με τις αλλαγές που βλέπει γύρω του. Οι πόλεις γύρω του έχουν αλλάξει, ο τρόπος ζωής των ανθρώπων έχει αλλάξει κι αυτός καθώς νέες τεχνολογίες έχουν μπει στη ζωή του, αλλά και άλλα πολλά. Η μεγαλύτερη έκπληξη όμως τον περιμένει όταν πηγαίνει στο σπίτι του δίδυμου αδερφού του Σταμάτη. Αντί να δει ένα παλικάρι 31 ετών (που είναι η ηλικία του) βλέπει ένα παππούλη με δύο εγγόνια στην ηλικία που είχε όταν ξεκίνησε το ταξίδι του !!! Ο Σταμάτης βλέποντας το δίδυμο αδερφό του τον αναγνωρίζει φυσικά αμέσως και ανοίγει την αγκαλιά του να τον υποδεχτεί :
“Καλωσόρισες Γρηγόρη ! Πως ήταν το ταξίδι ;” λέει ο Σταμάτης. “Ένα ταξίδι στο διάστημα είναι μια εκπληκτική εμπειρία. Βλέπεις υπέροχους κόσμους που δε τους φαντάζεσαι καν… αλλά μια στιγμή ο Σταμάτης που είναι ;” “ΕΓΩ ΕΙΜΑΙ, τόσο πολύ άλλαξα ;!” απαντά ο Σταμάτης. “Τι ‘κακό’ σε βρήκε και φαίνεσαι σαν να ‘σαι 80άρης;” ρωτά ο Γρηγόρης. “Μα ΕΙΜΑΙ 80 ετών, βρισκόμαστε στο έτος 2068…”
Ο Γρηγόρης λιποθυμά και ο Σταμάτης τον αρχίζει “στα χαστούκια” για να τον συνεφέρει !
Ας το δούμε όμως απ’ τη σκοπιά της επιστήμης :
Είναι φυσικό ν’ αναρωτηθούμε “ποιος από τους δίδυμους αδερφούς ταξίδεψε με ταχύτητα πλησίον εκείνης του φωτός” διότι αυτός θα είναι που δε θα γέρασε. Στο σύστημα αναφοράς του Σταμάτη αυτός έμεινε στη Γη ενώ ο Γρηγόρης έφυγε για στο ταξίδι. Απ’ την άλλη πλευρά κάποιος άλλος από αλλού μπορεί να πει ότι ο Σταμάτης μαζί με τη Γη ταξίδεψε με την προαναφερθείσα ταχύτητα και κατόπιν επέστρεψαν. Ακριβώς αυτό είναι το παράδοξο.
Για να το λύσουμε πρέπει να επισημάνουμε την προσοχή μας στο γεγονός ότι, για να συναντηθούν κινήθηκαν με διαφορετική κατεύθυνση και ταχύτητα κατά τη διάρκεια του ταξιδιού. Έτσι, δε μπορούμε να υπολογίσουμε τη διαστολή του χρόνου στηριζόμενοι αποκλειστικά στην ειδική θεωρία της σχετικότητας.
Επίλογος
Δύο μεγάλες επαναστάσεις δημιούργησαν τη μοντέρνα φυσική : Η θεωρία της σχετικότητας και η κβαντική φυσική. Η πρώτη είναι μια θεωρία για το χώρο, το χρόνο και την κίνηση ενώ η δεύτερη περιγράφει τη συμπεριφορά της ύλης σε μοριακό, ατομικό αλλά και υποατομικό επίπεδο (ηλεκτρόνια, πρωτόνια, νετρόνια, κουάρκς, κ.α.). Οι συνέπειές τους είναι αινιγματικές αλλά και βαθιές. Ένα απ’ τα “θύματα” της ειδικής θεωρίας της σχετικότητας είναι η αντίληψη ότι ο χρόνος είναι απόλυτος και οικουμενικός (Newton). Ο Einstein απέδειξε, όπως είδαμε, ότι ο χρόνος είναι ελαστικός και συστέλλεται ή διαστέλλεται εξαιτίας της κίνησης. Κάθε παρατηρητής έχει την προσωπική του κλίμακα ροής χρόνου που είναι διαφορετική για κάποιον άλλο. Αυτή η “αλλόκοτη” συμπεριφορά του χρόνου ανοίγει το δρόμο για ταξίδια στο χρόνο, που έτσι κι αλλιώς κάνουμε στιγμή – στιγμή, αλλά σε κάποιους άλλους επιτρέπει να φτάνουν γρηγορότερα ! (παράδοξο διδύμων). Αρκεί να σκεφτούμε ότι ο Γρηγόρης “έχασε” 49 χρόνια γήινων πεπραγμένων ! Η στάση του φυσικού απέναντι στο χρόνο έχει επηρεαστεί πολύ απ’ τις εμπειρίες του (πειραματική επιβεβαίωση διαστολής του χρόνου) με αποτέλεσμα να επαναλαμβάνει τα λόγια από το φιλοσοφικό μυθιστόρημα του Βολταίρου “Το πεπρωμένο” : “Τίποτα δεν είναι πιο μεγάλο, αφού αυτός είναι το μέτρο της αιωνιότητας. Τίποτα δεν είναι πιο μικρό αφού δε φτάνει για τα σχέδιά μας. Τίποτα δεν είναι πιο μακρύ γι’ αυτόν που περιμένει, για τον άρρωστο που πονάει. Τίποτα δεν είναι πιο σύντομο γι’ αυτόν που είναι ευτυχισμένος. Εκτείνεται μέχρι το άπειρο σιγά – σιγά. Ολοι οι άνθρωποι τον παραμελούν και όλοι λυπούνται για την απώλειά του. Τίποτα δε γίνεται χωρίς αυτόν. Μας κάνει να ξεχνάμε ότι είναι ανάξιο για το μέλλον ενώ χαρίζει την αθανασία στα άξια ! ”
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου