Πέμπτη 22 Ιουλίου 2010

Ισχυρή μαύρη τρύπα εκπέμπει δύο πανίσχυρους πίδακες.

Συνδυάζοντας παρατηρήσεις που έγιναν με το Πολύ Μεγάλο Τηλεσκόπιο του Ευρωπαϊκού Νότιου Παρατηρητηρίου ESO και του τηλεσκοπίου Chandra ακτίνων-Χ, αστρονόμοι ανακάλυψαν το πιο ισχυρό ζεύγος πιδάκων που έχουμε δει ποτέ από μια αστρική μαύρη τρύπα. Η μαύρη τρύπα τροφοδοτεί με αέριο μια τεράστια φυσαλίδα καυτού αερίου, πλάτους 1.000 έτη φωτός ή διπλάσια σε μέγεθος και δεκάδες φορές πιο ισχυρή από άλλα τέτοια παρόμοια μικροκβάζαρ. Η αστρική μαύρη τρύπα ανήκει σε ένα δυαδικό σύστημα, όπως αυτό που απεικονίζεται στην καλλιτεχνική εικόνα.


Πίδακες εκπέμπονται από μια μαύρη τρύπα που τροφοδοτείται από υλικό που κλέβει από ένα συνοδό άστρο.
Μια σχετικά μικρή μαύρη τρύπα δημιουργεί εξαιρετικά ισχυρούς πίδακες, δημιουργώντας παράλληλα μια τεράστια φυσαλίδα καυτού αερίου. Τόσο οι πίδακες όσο και η φυσαλίδα είναι η μεγαλύτερη που γνωρίσαμε ποτέ, πράγμα που σημαίνει ότι η μίνι μαύρη τρύπα είναι πολύ ισχυρή. Αλλά το πιο ασυνήθιστο χαρακτηριστικό γνώρισμα αυτής της αξιοπρόσεκτης μαύρης τρύπας δεν είναι η παραγωγή ενέργειας, αλλά ο τρόπος που εκπέμπει την ενέργεια.
«Η παραγωγή ενέργειας είναι εντυπωσιακή, αλλά μπορεί να συγκριθεί με τη φωτεινότητα ακτίνων Χ των υπερφωτεινών πηγών ακτίνων Χ», αναφέρει ο Manfred Pakull, επικεφαλής συντάκτης της δημοσιευμένης έρευνας στο Nature. “Η ιδέα ότι υπάρχουν εργοστάσια παραγωγής ενέργειας που παράγουν το μεγαλύτερο μέρος της ενέργειάς τους με τη μορφή πιδάκων (κινητική ενέργεια) και όχι ως ακτινοβολία (φωτόνια) είναι αρκετά πρόσφατη."
Οι μαύρες τρύπες είναι γνωστό ότι απελευθερώνουν ένα απίστευτο ποσό ενέργειας όταν καταπίνουν την ύλη, και όπως λέει ο Pakull, προηγουμένως νομίζαμε ότι το μεγαλύτερο μέρος της ενέργειας ελευθερώνεται με τη μορφή ακτινοβολίας, κυρίως ακτίνες-Χ. Αλλά αυτή η νέα μαύρη τρύπα (ονομάζεται S26) που εκπέμπει καυτό αέριο, δείχνει ότι μερικές μαύρες τρύπες μπορεί να απελευθερώσουν πολύ περισσότερη ενέργεια με τη μορφή παράλληλων πιδάκων από ταχέως κινούμενα σωματίδια.
"Η μαύρη αυτή τρύπα έχει μάζα ίση με λίγες μόνο ηλιακές μάζες, αλλά είναι πραγματική μια μικρογραφία των πιο ισχυρών κβάζαρ και των ραδιογαλαξιών”, δήλωσε ο Pakull, "που περιέχουν μαύρες τρύπες με μάζες μερικά εκατομμύρια φορές εκείνης του Ήλιου."
Γι αυτό και το αντικείμενο αυτό λέγεται μικροκβάζαρ. Αποτελείται από δύο αντικείμενα – είτε από ένα λευκό νάνο, άστρο νετρονίων ή μια μαύρη τρύπα, μαζί με ένα συνοδό αστέρι. Οι ακτίνες Χ που παράγονται από τα θέματα που εμπίπτουν από ένα στοιχείο στο άλλο, και μπορούν να παράγουν πίδακες από υψηλής ταχύτητας σωματίδια. Οι γρήγοροι αυτοί πίδακες κτυπούν το περιβάλλον διαστρικό αέριο, το θερμαίνουν και προκαλούν μια συνεχώς διευρυνόμενη φυσαλίδα από καυτό αέριο και υπερ-ταχύτατα σωματίδια να συγκρούονται σε διάφορες θερμοκρασίες.
Από μια σχεδόν δωδεκάδα μικροκβάζαρ που έχουν βρεθεί στον Γαλαξία μας, οι περισσότερες από τις φυσαλίδες είναι σχετικά μικρές, – πλάτους λιγότερο από 10 έτη φωτός. Αλλά αυτό το μικροκβάζαρ είναι διαμέτρου 1.000 έτη φωτός. Επιπλέον αυτό είναι δεκάδες φορές πιο ισχυρό από αυτά που ήδη έχουμε δει.
Χρησιμοποιώντας το το Πολύ Μεγάλο Τηλεσκόπιο του Ευρωπαϊκού Νότιου Παρατηρητηρίου (ESO) και το τηλεσκόπιο Chandra των ακτίνων-Χ, ο Pakull και η ομάδα του ήταν σε θέση να παρατηρήσουν τις περιοχές όπου οι πίδακες κτυπούν το διαστρικό αέριο γύρω από τη μαύρη τρύπα, και είδαν έτσι ότι η φυσαλίδα του καυτού αερίου διαστέλλονται με μια ταχύτητα σχεδόν εκατομμύριο χιλιόμετρα την ώρα.
Για σύγκριση, αν η μαύρη τρύπα είχε συρρικνωθεί στο μέγεθος μιας μπάλας ποδοσφαίρου, κάθε πίδακας θα εκτείνεται από τη Γη προς ακόμα πιο πέρα και από την τροχιά του Πλούτωνα.
Το αντικείμενο S26 βρίσκεται 12 εκατομμύρια έτη φωτός μακριά μας, στις παρυφές του σπειροειδή γαλαξία NGC 7793. Από το μέγεθος και την ταχύτητα επέκτασης της «φυσαλίδας» οι αστρονόμοι έχουν διαπιστώσει ότι η δραστηριότητα του κάθε πίδακα πρέπει να ήταν σε εξέλιξη για τουλάχιστον 200.000 χρόνια.
"Ναι, η ταχύτητα διαστολής (275 km s) είναι αρκετά εντυπωσιακή, αλλά θα μειωθεί με τον καιρό", εξήγησε ο Pakull. "Αν ήταν πολύ χαμηλότερη, ας πούμε, 70 km/s το αέριο δεν θα εξέπεμπε τόσο οπτικό φως (για παράδειγμα την σειρά Balmer του υδρογόνου) και δεν θα είχαμε ανιχνεύσει την φυσαλίδα. Το μέλλον του S26 εξαρτάται από την εξέλιξη του κεντρικού μικροκβάζαρ που εκπέμπει τους πίδακες. Περιμένω ότι θα μπορούσε να είναι ενεργό για άλλα 100.000 εκατομμύρια χρόνια. "
Ο Pakull λέει ότι θα είναι ενδιαφέρον να φανταστούμε τι θα συμβεί εάν το μικροκβάζαρ ξαφνικά σταματήσει να εκπέμπει πίδακες. "Τότε η φυσαλίδα δεν θα εξαφανιστεί ξαφνικά, αλλά θα λάμπει όπως πριν για μερικά ακόμα 100.000 χρόνια. Θα μοιάζει με ένα απομεινάρι σουπερνόβας, έστω και με 100 φορές υψηλότερο ενεργειακό περιεχόμενο."
Ο Pakull προσθέτει ότι αυτό το νέο εύρημα θα βοηθήσει τους αστρονόμους να καταλάβουν την ομοιότητα μεταξύ των μικρών μαύρων οπών που σχηματίζονται από την έκρηξη των άστρων καθώς και τις μαύρες τρύπες στα κέντρα των γαλαξιών, και ελπίζει ότι το έργο αυτό θα τονώσει περισσότερο την θεωρητική εργασία στον τρόπο που οι μαύρες τρύπες παράγουν ενέργεια .

Είναι το πρωτόνιο μικρότερο από όσο πιστεύαμε;

Πόσο μεγάλο είναι ένα πρωτόνιο; Η πιο ακριβής η μέτρηση δείχνει όμως ότι είναι μικρότερα από ό,τι νομίζαμε. Αυτό θα μπορούσε να οφείλεται σε ένα λάθος – ή ίσως είναι απλώς ένας υπαινιγμό για μια εντελώς νέα σωματιδιακή φυσική.
Απίστευτη σμίκρυνση των πρωτονίων προκαλεί έκπληξη
"Το νέο πείραμα παρουσιάζει ένα αίνιγμα με καμιά προφανή εξήγηση," λέει ο Peter Mohr της Διεθνούς Επιτροπής Δεδομένων για την Επιστήμη και την Τεχνολογία (CODATA), η οποία υπολογίζει τις τιμές των θεμελιωδών σταθερών της φυσικής, και που δεν συμμετείχε στη νέα εργασία.
Όπως και τα περισσότερα κβαντικά αντικείμενα, έτσι και ένα πρωτόνιο είναι ασαφές στις άκρες του. Το μέγεθός του καθορίζεται από την έκταση του θετικού φορτίου του και όχι από ένα καθορισμένο φυσικό σύνορο. Αυτή η ακτίνα του φορτίου δεν μπορεί να μετρηθεί άμεσα, αλλά μπορεί να συναχθεί από το άτομο του υδρογόνου, που αποτελείται από ένα πρωτόνιο και ένα ηλεκτρόνιο.
Το ηλεκτρόνιο μπορεί να βρίσκεται σε μια ποικιλία ενεργειακών "φλοιών" ή στάθμες, η κάθε μία με μια διαφορετική κατανομή στο χώρο. Η κατανομή ενός φλοιού σύμφωνα με την κβαντομηχανική απαιτεί κάποιο ηλεκτρόνιο να ‘βουτά’ ακόμα και μέσα στο πρωτόνιο, ενώ ένα ηλεκτρόνιο άλλου φλοιού να βρίσκεται εντελώς έξω από το πρωτόνιο. Οι ενέργειες και των δύο αυτών φλοιών μπορούν να συνδυαστούν για να συμπεράνουμε την ακτίνα των πρωτονίων, χρησιμοποιώντας μια θεωρία που είναι γνωστή ως κβαντική ηλεκτροδυναμική (QED).


Μιονικά άτομα
Υπάρχει δε ένας τρόπος για να γίνει αυτή η μέτρηση ακόμη πιο ακριβής: να αντικαταστήσουμε το ηλεκτρόνιο με ένα μιόνιο. Αυτό το σωματίδιο είναι αρνητικά φορτισμένο αλλά πολύ μεγαλύτερης μάζας από το ηλεκτρόνιο, έτσι οι ενεργειακοί φλοιοί του επκάθονται περισσότερο μέσα στην ακτίνα των πρωτονίων.
Η δημιουργία ενός τέτοιου «μιονικού ατόμου» υπήρχε στη σκέψη των φυσικών από το 1969, λέει ο Randolf Pohl του Ινστιτούτου Max Planck της Γερμανίας, όταν προτάθηκε για πρώτη φορά ως κριτήριο για την δοκιμή της QED. Αλλά το σημείο εκκίνησης για το πείραμα – το κέλυφος με το δεύτερο χαμηλότερο επίπεδο ενέργειας – εξακολουθεί να υφίσταται για πολύ λιγότερο από ένα μικροδευτερόλεπτο υπό κανονικάς συνθήκες, που όμως δεν είναι αρκετός χρόνος για τη μέτρηση της ενέργειας, που θέλουμε για να βρούμε την ακτίνα του πρωτονίου.
Ο Pohl και οι συνάδελφοί του μόλις πρόσφατα ανέπτυξαν μια εργαστηριακή μέθοδο που τους επιτρέπει να παρατείνουν αυτή την κατάσταση και έτσι να μετρήσουν την ακτίνα των πρωτονίων με τη βοήθεια των μιονικών ατόμων.


«Αδύνατο» λάθος
Για να το καταφέρουν επιβράδυναν μιόνια σε ένα δοχείο διάχυτο με αέριο υδρογόνο, υπό πίεση ενός χιλιοστού της ατμοσφαιρικής. Καθώς τα μιόνια ‘κλειδώνονταν’ μαζί με τους πυρήνες του υδρογόνου, ξεκίνησαν από τις υψηλές ενεργειακές στάθμες.
Τα περισσότερα από αυτά τα μιόνια έπεσαν κατευθείαν στην χαμηλότερη στάθμη (φλοιό) ενέργειας, αλλά 1 στα 100 έπεσε στην δεύτερη χαμηλότερη στάθμη. Η ομάδα είχε στη συνέχεια μόνο ένα μικροδευτερόλεπτο καιρό για να χτυπήσει αυτά τα μιόνια, με ένα παλμό λέιζερ συντονισμένοι ακριβώς στη συχνότητα που απαιτούνταν για να ανεβούν στην επόμενη στάθμη και τότε μέτρησαν την ενέργεια του.
Προς έκπληξή τους, όταν οι φυσικοί συνδύασαν αυτή τη μέτρηση με την ενέργεια της κάτω στάθμης, οι υπολογισμοί τους αποκάλυψαν μια ακτίνα των πρωτονίων 0,84184 femtometres, κάτι λιγότερο από το ένα τρισεκατομμυριοστό του χιλιοστού και κατά 4% πιο μικρή από εκείνη που εύρισκαν με το άτομο του υδρογόνου.
Πρόκειται για μια διαφορά μεταξύ των δύο πειραματικών αποτελεσμάτων (μιονίων και ηλεκτρονίων) πολύ μεγαλύτερη από τα αναμενόμενα. "Οι σχετικές θεωρίες μας λένε ότι ένα σφάλμα τέτοιου μεγέθους είναι «αδύνατη», τονίζει ο Pohl.

Αναδύεται μια νέα φυσική;
Ο Mohr υπολογίζει πως το πρόβλημα είναι πιθανό να προέκυψε με ένα λάθος σε μία από τις μετρήσεις. Είτε του ατόμου με το υδρογόνο ή με το μιόνιο στη θέση του ηλεκτρονίου, ή με ένα λάθος στους υπολογισμούς.
Ο Savely Karshenboim, επίσης μέλος της Διεθνούς Επιτροπής CODATA από το Ινστιτούτο Max Planck, στοιχηματίζει για ένα λάθος στην μελέτη του μιονικού ατόμου, διότι «έρχεται σε αντίθεση με ένα άλλο πειστικό αποτέλεσμα».
Ωστόσο, αν αυτά τα σφάλματα αποκλειστούν τότε αυτή η διαφορά θα αφορούσε κάποιο πρόβλημα με την QED, μια θεωρία που στηρίζει ένα μεγάλο μέρος της σωματιδιακής φυσικής. Και τούτη η ανεπάρκεια ανοίγει το δρόμο για μια νέα φυσική σε σχέση με τα άτομα, όπως για παράδειγμα άγνωστα μέχρι στιγμής σωματίδια.
Ο Pohl στέκεται στα πειραματικά του αποτέλεσμα, αλλά προειδοποιεί για τον κίνδυνο του άλματος σε αυτό το προηγούμενο συμπέρασμα. "Η νέα φυσική μπορεί βεβαίως πάντα να χρησιμοποιηθεί για να εξηγήσει οποιαδήποτε διαφορά, αλλά πριν από μια τέτοια αξίωση πρέπει να γίνει μια πολύ σκληρή δουλειά για να αποκλειστούν άλλα πιο πεζές εξηγήσεις, και αυτή είναι μπροστά μας”.

Θεωρίες για την προέλευση και την εξέλιξη του Σύμπαντος.

Το σύμπαν μοιάζει με ένα βιβλίο ανοιχτό μόνο στη σημερινή σελίδα. Ποιός μπορεί να είναι ο συγγραφέας του είναι ένα γεγονός που συζητείται εδώ και χιλιάδες χρόνια, αλλά δεν θα τον γνωρίσουμε ποτέ. Κανείς επίσης δεν θα ανοίξει τις πρώτες του σελίδες για να κατανοήσει τις αρχικές του φράσεις. Ολόκληρη η αφήγηση του βιβλίου του σύμπαντος θα πρέπει να αναπλαστεί από τη δράση αντικειμένων που αποτελούν το σύμπαν, αλλά και τους τόπους της δράσης που είναι σήμερα ορατοί. Εδώ όμως και 40 χρόνια οι φυσικοί επιστήμονες έχουν συντάξει μια ιστορία, το Καθιερωμένο Μοντέλο του big bang, που περιγράφει, σε μια ενιαία πλοκή, όλα τα συμβάντα των τελευταίων 13,7 δισεκατομμυρίων ετών. Υπάρχουν όμως κρυμμένα ζητήματα: Δεν ξέρουν τι συνέβη στην αρχή του big bang, δεν ξέρουν γιατί η πλοκή αυτή είναι κατανοητή και δεν καταλαβαίνουν γιατί υπάρχουν όντα στον Κόσμο που θέλουν να κατανοήσουν την ιστορία του βιβλίου.








Φυσικά ο καθένας μας έχει ακούσει για το Καθιερωμένο Μοντέλο, αλλά είναι βέβαιο ότι όλοι εν συνεχεία ρωτούν "Και τι προκάλεσε το big bang;" Και όλα τελειώνουν εκεί, επειδή κανένας δεν είναι ακόμα βέβαιος τι ανάγκασε πραγματικά να συμβεί η Μεγάλη Έκρηξη.






Υπάρχουν κι άλλα ζητήματα. Το σύμπαν είχε ποτέ αρχή ή αυτό υπάρχει για πάντα, δηλαδή είναι αιώνιο. Αυτό το θεμελιώδες ζήτημα ήταν το κύριο θέμα στην αρχαία φιλοσοφία αλλά και της φιλοσοφίας κατά την Αναγέννηση. Στη σύγχρονη κοσμολογία το ζήτημα αυτό ήταν η αιτία της διαμάχης μεταξύ των υπερασπιστών της Μεγάλης Έκρηξης και της σταθεράς κατάστασης πριν πολλές δεκαετίες. Τελευταία γίνονται νέες προσπάθειες ώστε να εξηγηθεί η Μεγάλη Έκρηξη μέσα σε ένα κβαντικό κοσμολογικό πλαίσιο.






Εδώ θα προσπαθήσουμε να ερευνήσουμε όλες τις τρέχουσες επιστημονικές θεωρίες που προσπαθούν να εξηγήσουν πώς δημιουργήθηκε ο Κόσμος. Αρχικά υπάρχουν δύο θεωρίες που είναι άμεσες ερμηνείες άλλων θεωριών, οι οποίες όμως δεν έχουν αποδειχθεί ακόμα, εν συνεχεία υπάρχουν θεωρίες που προτείνονται ανεξάρτητα από τους θεωρητικούς φυσικούς. Θα προσπαθήσουμε να αναφέρουμε όλες τις θεωρίες και να σας αφήσουμε να αποφασίσετε εσείς ποιός είναι ο πιο εύλογος τρόπος που γεννήθηκε το σύμπαν. Φυσικά υπάρχει και η κλασσική θεωρία του Big Bang






1η Θεωρία: Δεν υπήρξε ποτέ καμία αρχή του Κόσμου και δεν θα υπάρξει κανένα τέλος του. Είναι τόσο παλιά αυτή η θεωρία όσο και οι άνθρωποι. Η εξελιγμένη της μορφή είναι η Κβαντική Θεωρία Βρόχων (LQG) που προτάθηκε από τους Martin Bojowald, Ashtekar και άλλους. Δεν υπάρχει ακόμη καμία απόδειξη της.






2η Θεωρία: Η εκπυρωτική θεωρία προτάθηκε το 2001 από τον Neil Turok και δεν υπάρχει καμία απόδειξη που να την επαληθεύει.






3η Θεωρία: Το σύμπαν χωρίστηκε στα δύο. Προτάθηκε από τον Cumrun Vafa το 1994 και προκύπτει από έμμεσα συμπεράσματα της αποστολής WMAP.






4η Θεωρία: Το σύμπαν φτιάχτηκε εκ του μηδενός. Υπάρχουν πολλοί που υποστηρίζουν τη θεωρία από το 1925, που αναπτύχθηκε η κβαντική θεωρία. Αποδείξεις υπάρχουν στην κβαντική θεωρία (πχ στο πείραμα της διπλής σχισμής).






5η Θεωρία: Το Σύμπαν κατασκευάστηκε στο εργαστήριο εξωγήινων πολιτισμών. Προτάθηκε από τον Ed Harrison γύρω στο 2001 και δεν υπάρχει καμία απολύτως απόδειξη.






6η Θεωρία: Το Σύμπαν δημιουργήθηκε από μόνο του. Το 1998 ο Richard Gott III δημοσίευσε μια εργασία στην οποία υποστήριξε τη θεωρία αυτή. Ο ίδιος αναφέρει σαν αποδείξεις την διάσπαση του ουρανίου (κι άλλα κβαντικά φαινόμενα με το πέρασμα σήραγγος), καθώς επίσης τη θεωρία χορδών και τους κανόνες για ένα ταξίδι στον χρόνο.






7η Θεωρία: Η θεωρία περί μεταβολής της ταχύτητας του φωτός, η οποία προτάθηκε από τον Πορτογάλο θεωρητικό João Magueijo γύρω στο 1998. Ο ίδιος λέει ότι αποδείξεις υπάρχουν στις αλλαγές της συχνότητας του φωτός, που μας έρχεται από πολύ μακριά (πχ από τα κβάζαρ) και από διάφορες αποστάσεις, ενώ περνάει μέσα από κοσμικά νέφη αερίων.






8η Θεωρία: Η Θεία Πρόνοια είναι η θεωρία που ξεκίνησε από το Μωϋσή και υπάρχει εδώ και 4.000 χρόνια. Οι αποδείξεις βρίσκονται στα Ιερά Κείμενα.






Υπάρχουν κι άλλες θεωρίες, αλλά οι παραπάνω 8 θεωρούνται οι κύριες θεωρίες. Θα εξετάσουμε τα αποδεικτικά στοιχεία της κάθε μίας θεωρίας, τα πλεονεκτήματα και τα μειονεκτήματα της. Τι θα πιστέψετε στο τέλος είναι δικιά σας υπόθεση.

Τετάρτη 21 Ιουλίου 2010

Ο 20ος αιώνας των μεγάλων θεωριών.

Α! Αστρικές δομή και εξέλιξη




Με τον ερχομό του 20ού αιώνα το θέμα της φύσης των «νεφελοειδών» ήταν για δεκαετίες ακόμη το αντικείμενο διαφωνιών και αντεγκλήσεων, αφού κανένας δεν γνώριζε τι ακριβώς ήσαν, ήταν ένα από τα κύρια αντικείμενα διαφωνιών και αντεγκλήσεων μεταξύ των αστρονόμων. Στα μέσα, όμως της δεκαετίας του 1910 ο Αμερικανός αστρονόμος Harlow Shapley (1885-1972), εξετάζοντας τη χωροταξική κατανομή των σφαιρωτών σμηνών στο Γαλαξία μας έδωσε μια ξεκάθαρη εικόνα του Γαλαξία μας και των άστρων που φαίνονταν στο νυχτερινό ουρανό, ενώ συγχρόνως το Ηλιακό μας Σύστημα βρέθηκε να είναι τοποθετημένο όχι στο κέντρο, όπως θεωρούσαν μέχρι τότε, αλλά στις παρυφές του Γαλαξία. Μ’ αυτόν τον τρόπο, δηλαδή, ο Shapley εκθρόνισε τον Ήλιο από το κέντρο του Γαλαξία, όπως ακριβώς ο Κοπέρνικος είχε εκθρονίσει τη Γη από το κέντρο του Ηλιακού μας Συστήματος.






Στις αρχές του 20ου αιώνα ο Δανός αστρονόμος Ejnar Hertzsprung (1911) και αργότερα ο Αμερικανός Henry Russell (1913), ανεξάρτητα ο ένας από τον άλλο, πρότειναν ότι η λαμπρότητα (ή το απόλυτο μέγεθος) και η επιφανειακή θερμοκρασία (ή ο φασματικός τύπος) των κοντινών φωτεινών άστρων μπορεί να δείχνουν κατά ποιό τρόπο είχαν εξελιχθεί τα αστέρια στο χρόνο. Το διάγραμμα τους, που ονομάζεται διάγραμμα Hertzsprung­Russell (H-R), παριστάνει τη σχέση μεταξύ του φασματικού τύπου – που συνδέεται άμεσα με τη θερμοκρασία επιφάνειας – και της λαμπρότητας – που εξαρτάται από το απόλυτο μέγεθος – των αστέρων ενός γαλαξία. Με αυτό τον τρόπο χωρίς να γνωρίζουμε τα στάδια εξέλιξης ενός άστρου, μελετούμε τα χαρακτηριστικά στοιχεία πολλών άστρων, που βρίσκονται σε διάφορα στάδια εξέλιξης. Αφού γνωρίζουμε τον φασματικό τύπο, το χρώμα και την λαμπρότητα του άστρου που μας ενδιαφέρει, από το διάγραμμα των H-R βλέπουμε τι εξέλιξη θα έχει.






Στη δεκαετία του ’20 ο Arthur Eddington καθόρισε τις βασικές εξισώσεις της αστρικής δομής και της μεταφοράς ενέργειας, και παρήγαγε τις σχέσεις μεταξύ της μάζας, της ακτίνας και της κεντρικής θερμοκρασίας των αστεριών. Αυτές οι σχέσεις κατέδειξαν ότι το εσωτερικό των αστεριών ήταν σε θερμοκρασίες πάνω από ένα εκατομμύριο βαθμούς Kelvin. Εν τω μεταξύ η νέα κβαντική θεωρία του Niels Bohr εφαρμόστηκε στα ιόντα, που φαίνονταν στα επιφανειακά στρώματα των αστέρων, και ήταν κρίσιμη για την ανάπτυξη των μοντέλων των αστρικών ατμοσφαιρών. Αυτή η εργασία κατέληξε στην αναγνώριση ότι οι ατμόσφαιρες των αστεριών κυρίως αποτελούνται από υδρογόνο και ήλιο.






Στις 6 Οκτωβρίου 1923, με τη ραγδαία εξέλιξη της φωτογραφικής τέχνης και με τη βοήθεια του τεράστιου για την εποχή εκείνη τηλεσκοπίου με κάτοπτρο διαμέτρου 2,5 μέτρων στο όρος Ουίλσον στην Καλιφόρνια, ο αστρονόμος Edwin Hubble (1889-1953) κατόρθωσε να φωτογραφήσει μεμονωμένα άστρα στο νεφελοειδή της Ανδρομέδας επιβεβαιώνοντας έτσι την άποψη ότι επρόκειτο για έναν απόμακρο αστρικό κόσμο, μια τεράστια πολιτεία δισεκατομμυρίων άστρων έξω και πέρα από το δικό μας Γαλαξία. Πολύ πιο μακριά υπάρχουν 100 δισεκατομμύρια άλλοι γαλαξίες σαν το δικό μας.






Περίπου το 80% των αστέρων που έχουν ανακαλυφθεί βρίσκονται σε μια ζώνη που διασχίζει διαγώνια το διάγραμμα H-R και ονομάζεται Κύρια Ακολουθία. Στην Κύρια Ακολουθία, που προτάθηκε το 1932, βρίσκονται τα αστέρια που η βαρυτική κατάρρευση ισορροπείται από την πυρηνική καύση του υδρογόνου. Άρα αυτά τα άστρα αποτελούνται κυρίως από υδρογόνο. Η βασική ακολουθία επομένως ερμηνεύθηκε ως γεωμετρικός τόπος των διαφορετικών αστρικών μαζών, όχι μια εξελικτική διαδρομή.






Προς το τέλος της δεκαετίας του ’30 ο Hans Bethe και οι συνεργάτες του ανακάλυψαν τον κύκλο “πρωτονίου-πρωτονίου” καθώς και τον “κύκλο άνθρακα-αζώτου”, πυρηνικές διαδικασίες σύντηξης, που τροφοδοτούν με πυρηνικά καύσιμα τον ήλιο και τα άλλα αστέρια της Κύριας Ακολουθίας.






Και το 1955 οι Fred Hoyle και Martin Schwarzschild υπολόγισαν το πρώτο λεπτομερές μοντέλο για την εξέλιξη ενός αστέρος, που έχει εξαντλήσει το υδρογόνο στον πυρήνα του. Σε αυτό το σημείο το αστέρι αρχίζει να καίει το ήλιο του, δημιουργώντας κατά συνέπεια τον άνθρακα, το άζωτο και το οξυγόνο, και γρήγορα μεταβάλλεται σε ένα φωτεινό, διαστελλόμενο, ψυχρό “κόκκινο γίγαντα” άστρο. Μέχρι το 1962 οι Chishuro Hayashi και οι συνάδελφοι του ήταν σε θέση να εξηγήσουνι πλήρως το διάγραμμα Hertzsprung­Russell με λεπτομερή εξελικτικά μοντέλα για όλο το εύρος των αστρικών μαζών από 0.01 έως 100 φορές τη μάζα του ήλιου. Η πλήρης εξέλιξη των αστέρων από τη γέννησή τους έως το θάνατό τους έγινε τελικά κατανοητή.






Β! Μετρική κλίμακα και η διαστολή του Σύμπαντος






Οι μελέτες των μεταβλητών αστεριών, που ονομάστηκαν Κηφείδες από την Henrietta Leavitt το 1912, ήταν θεμελιώδεις στην ανακάλυψη του εξελισσόμενου σύμπαντος. Οι παλλόμενοι μεταβλητοί Κηφείδες είναι ένας τύπος αστεριού, που κατά κανονικά χρονικά διαστήματα μεταβάλλεται η λαμπρότητά τους. Το φαινόμενο οφείλεται σε περιοδικές αναπάλσεις (συστολή και διαστολή) της ατμόσφαιρας τους. Η Leavitt κατάφερε να δείξει ότι υπάρχει μια σχέση μεταξύ της απόλυτης φωτεινότητας (και απόλυτου μεγέθους) και της περιόδου του φωτεινού παλμού, που συνήθως είναι μερικές ώρες η και ημέρες ακόμη.






Ο Edwin Hubble χρησιμοποίησε αυτήν την σχέση το 1924 για να μετρήσει την απόσταση έως τα σπειροειδή νεφελώματα και κατέδειξε για πρώτη φορά ότι ήταν εξωγαλαξιακά αντικείμενα ενώ ο Γαλαξίας μας, που έχει διάμετρο 100.000 έτη φωτός, είναι ένας ανάμεσα σε αμέτρητους γαλαξίες. Εν τω μεταξύ ο Vesto Slipher χρησιμοποιώντας τη μετατόπιση Doppler των φασματικών γραμμών σε περισσότερους από 40 γαλαξίες, μέτρησε τις ακτινικές ταχύτητες τους και βρήκε ότι οι περισσότεροι από αυτούς, οι μακρινοί γαλαξίες, απομακρύνονταν από μας. Το φαινόμενο αυτό ονομάστηκε φυγή των γαλαξιών.






Το 1929 ο Hubble συνδύασε τις μετρήσεις που έκανε για τις αποστάσεις των γαλαξιών και εκείνες άλλων ερευνητών (που βασίστηκαν στα φωτεινότερα αστέρια μέσα στους γαλαξίες) με τις ταχύτητες απομάκρυνσης για να ανακαλύψει ότι τα δύο αυτά μεγέθη είναι ανάλογα. Όσο μεγαλύτερη είναι η απόσταση του γαλαξία τόσο μεγαλύτερη είναι η ταχύτητα του. Έβγαλε λοιπόν μια σχέση που είναι γνωστή σαν νόμος του Hubble v=H0d . Η διαστολή του Σύμπαντος είχε ανακαλυφθεί. Ανάλογα επίσης με τη τιμή της σταθεράς H0 του Hubble, μπορούμε να υπολογίσουμε και την ηλικία του Σύμπαντος.






Ο θεωρητικός Αλέξανδρος Friedmann είχε ήδη δείξει ότι τα μοντέλα της διαστολής του σύμπαντος βασίζονταν στη Γενική Σχετικότητα, ενώ το στατικό, ομοιογενές και ισοτροπικό μοντέλο του Σύμπαντος που αναπτύχθηκε από τον Einstein το 1917 ήταν λανθασμένο.






Για σχεδόν 30 χρόνια, εντούτοις, η χρονική κλίμακα της διαστολής του Σύμπαντος φάνηκε πάρα πολύ μικρή όταν συγκρίθηκε με την ηλικία της Γης και των παλαιότερων αστεριών. Έτσι η Γη κατά παράξενο τρόπο φαινόταν να είναι παλαιότερη και από το πιο παλιό άστρο. Ο Allan Sandage διευκόλυνε πολύ αυτό το πρόβλημα το 1956 χάρις στις βελτιωμένες του εκτιμήσεις για τις αποστάσεις των γαλαξιών.






Η διαμάχη για το ρυθμό διαστολής του Σύμπαντος ­ που υπολογίζετε με τη λεγόμενη σταθερά του Hubble, την H0 ­ συνέχισε να προκαλεί αντιθέσεις τα προηγούμενα 30 χρόνια. Το πρόβλημα της σταθεράς του Hubble H0 είναι το εξής: Το σύμπαν δεν διαστέλλεται με σταθερό ρυθμό, στις απαρχές του σύμπαντος η διαστολή επιταχυνόταν με μεγάλο ρυθμό, μετά η επιτάχυνση μετριάστηκε, ενώ σήμερα η διαστολή του Σύμπαντος επιταχύνεται αρκετά. Έτσι η σταθερά του Hubble αλλάζει τιμή ανάλογα με τον ρυθμό διαστολής ενώ στο μέλλον θα είναι μεγαλύτερη λόγω επιτάχυνσης της επέκτασης του Σύμπαντος.






Εντούτοις, σήμερα οι αστροφυσικοί έχουν καταλήξει σε μια τιμή της σταθεράς του Hubble H0 , που κυμαίνεται από 60 έως 70 km s­1 ανά μεγαπαρσέκ (1 μεγαπαρσέκ ισούται με 3.26 εκατομμύρια έτη φωτός). Αυτό μεταφράζεται σε μια χρονική κλίμακα διαστολής 15 ± 1,2 δισεκατομμύρια έτη, η οποία θα ήταν και η ηλικία του Σύμπαντος εάν δεν υπήρξε καμία επιτάχυνση ή επιβράδυνση της διαστολής του Σύμπαντος.






Εν τω μεταξύ η ηλικία των παλαιότερων αστεριών, που υπολογίζεται από τα μοντέλα της αστρικής εξέλιξης, έχουν μειωθεί σταθερά. Το 1982 η ηλικία αυτή υπολογίστηκε 17 δισεκατομμύρια έτη. Εντούτοις, οι πιό πρόσφατες μελέτες των αρχαίων αστεριών, χρησιμοποιώντας τις αποστάσεις που παράγονται από την αστρομετρική διαστημική αποστολή Hipparcos, εμφανίζουν ότι τα αρχαία αυτά αστέρια είναι ηλικίας 11.5 ± 1.5 δισεκατομμύρια έτη. Αυτό σημαίνει ότι δεν υπάρχει πλέον κανένα “πρόβλημα ηλικίας” για το Σύμπαν.






Γ! Η νέα αστρονομία χρησιμοποιεί τις μη ορατές ακτινοβολίες






Η εν καιρώ του πολέμου ανάπτυξη του ραντάρ έβγαλε μια ολόκληρη γενιά ράδιο-εμπειρογνωμόνων στην αστρονομία, για να ακολουθήσουν πρωτοποριακές ανακαλύψεις, που έγιναν στη δεκαετία του ’30 και τη δεκαετία του ’40. Το 1934 ο Karl Jansky είχε ανακαλύψει τη ράδιο-εκπομπή από τον Γαλαξία μας και στη δεκαετία του ’40 ο Grote Reber ολοκλήρωσε τους πρώτους ράδιο-χάρτες όλου του Ουρανού. Στην ίδια περίοδο ο John Hey ανακάλυψε τη ράδιο-εκπομπή από τον ήλιο και ανίχνευσε τις πρώτες σημειακές ράδιο-πηγές. Μέχρι την πρόσφατη δεκαετία του ’50 η ραδιοαστρονομία είχε αρχίσει να είναι ένα πολύ σημαντικό πεδίο της σύγχρονης αστρονομίας.






Αμέσως ακολούθησαν έρευνες σε άλλες ζώνες μηκών κύματος: Γρήγορα η υπέρυθρη αστρονομία έκανε μεγάλη πρόοδο κατά τη διάρκεια της δεκαετίας του ’60, που κατέληξε στην πτήση του Υπέρυθρου Αστρονομικού Δορυφόρου (IRAS) το 1983 και του Υπέρυθρου Διαστημικό Παρατηρητηρίου της Ευρωπαϊκής Διαστημικής Εταιρείας (ISO) το 1995. Η έναρξη του δορυφόρου Uhuru το 1970 χαρακτηρίστηκε σαν ένα μεγάλο βήμα προς τα εμπρός για την αστρονομία των ακτίνων X.






Οι νέοι αστρονόμοι κατάφεραν να ανακαλύψουν μια πλούσια γκάμα νέων φαινομένων, όπως οι ραδιογαλαξίες, τα κβάζαρ, τα pulsars και από εκεί τους αστέρες νετρονίων. Άλλα ευρήματα έχουν συμπεριλάβει τα διπλά συστήματα ακτίνων X με αστέρια νετρονίων και μαύρες οπές, τις ογκώδεις μαύρες οπές στους γαλαξιακούς πυρήνες, τα άστρα με τις εκπομπές ακτινοβολίας και τους υπερφωτισμένους στο υπέρυθρο γαλαξίες, τους πρωτοπλανητικούς δίσκους, και τέλος τους βαρυτικούς φακούς από τα αστέρια, τους γαλαξίες και τα σμήνη των γαλαξιών.






Οι μαύρες οπές απέδειξαν ότι να είναι μια από τις πιό δραματικές συνέπειες της Γενικής Θεωρίας της Σχετικότητας του Einstein. Για πρώτη φορά συζητήθηκαν από μια ομάδα θεωρητικών αστροφυσικών, αλλά τώρα φαίνονται ότι είναι η κοινή τελική κατάληξη για τα αστέρια, που έχουν τουλάχιστον 20 φορές τη μάζα του δικού μας ήλιου. Οι μαύρες οπές είναι κυρίαρχες στους γαλαξιακούς πυρήνες, όπου βρίσκονται με μάζες που κυμαίνονται μεταξύ 10 6 και 10 9 ηλιακών μαζών. Αν και οι αποδείξεις για την ύπαρξή τους είναι, αναπόφευκτα, έμμεσα, είναι ήδη συντριπτικές.






Η αστροφυσική τώρα της υψηλής ενέργειας ­ δηλαδή η μελέτη των ενεργητικών φωτονίων και των σχετικιστικών σωματιδίων ­ είναι καταπληκτικό πλούσιο πεδίο. Τα επιτεύγματα αυτού του πεδίου, έχουν περιλάβει την αναλυτική φυσική της αεριώδους προσαύξησης στους δίσκους γύρω από τις μαύρες οπές και τα συμπαγή αστέρια, και τα μοντέλα για την παραγωγή των σχετικιστικών πιδάκων στους ενεργούς γαλαξιακούς πυρήνες.






Δ! Το διαστρικό μέσο






Η ανακάλυψη της διαστρικής σκόνης από τον Robert Trumpler το 1930, μετασχημάτισε την αντίληψή μας για το χώρο μεταξύ των αστεριών. Μελέτες που ακολούθησαν για τη σκόνη και το ατομικό, μοριακό και ιονισμένο αέριο, μας έχουν αποκαλύψει τη σύνθετη φυσική των νεφών του αερίου και της σκόνης που εισχωρούν μέσα στους γαλαξίες, συμπεριλαμβανομένου και του δικού μας. Οι φασματοσκοπικές μελέτες, που κυμαίνονται από τα οπτικά μήκη κύματος έως τα ραδιοκύματα, είναι ιδιαίτερα σημαντικά στην κατανόηση των τρόπων με τους οποίους σχηματίζονται τα νέα αστέρια συνεχώς από τη διαστρική σκόνη και το αέριο.






Τα περισσότερα από τα βαριά στοιχεία στο διαστρικό μέσο, που περιλαμβάνουν περίπου 2% της συνολικής του μάζας, βρίσκονται είτε υπό μορφή μικρών κόκκων πυριτικού άλατος είτε ανθρακούχου σκόνης, είτε σε μόρια μονοξειδίου του άνθρακα. Ο Arno Penzias και οι συνεργάτες του ανακάλυψαν αρχικά το μονοξείδιο άνθρακα στο διαστρικό διάστημα το 1970. Τώρα είναι γνωστά πάνω από 50 είδη διαστρικών μορίων.






Η διαστρική σκόνη έχει μια δραστική επίδραση στη ροή της ακτινοβολίας μέσα σε ένα γαλαξία. Ένα σημαντικό μέρος του ορατού και υπεριώδους φωτός που εκπέμπεται από τα αστέρια απορροφάται δραστικά από τη σκόνη και επανεκπέμπεται στα υπέρυθρα μήκη κύματος (ανωτέρω σχήμα). Οι χάρτες του ουρανού, που έγιναν από το IRAS, αποκάλυψαν την πλήρη εικόνα αυτής της επανεκπεμπόμενης ακτινοβολίας για πρώτη φορά.






Ε! Η θερμή Μεγάλη Έκρηξη (Big Bang)






Όμως η σημαντικότερη δραματική ανακάλυψη της νέας αστρονομίας ήταν η ανακάλυψη της μικροκυματικής ακτινοβολίας υποβάθρου από τους Penzias και Robert Wilson το 1965. Αυτή η ακτινοβολία ερμηνεύθηκε αμέσως ως το απομεινάρι της ακτινοβολίας – στην φάση που κυριαρχούσε στο σύμπαν αμέσως μετά τη Θερμή Μεγάλη Έκρηξη. Ο υψηλός βαθμός ισοτροπίας του, έδειξε μια εξαιρετικά απλή δομή για το Σύμπαν στις μεγαλύτερες κλίμακες.






Στη δεκαετία του ’40 και τη δεκαετία του ’50 ο George Gamow και οι συνάδελφοι του είχαν προωθήσει την έννοια ενός θερμού Bing Bang Σύμπαντος, που κυριαρχήθηκε από την ακτινοβολία στα αρχικά του στάδια. Ήλπιζαν έτσι να εξηγήσουν ότι τα στοιχεία δημιουργήθηκαν από τις πυρηνικές αντιδράσεις στον αρχικό Κόσμο. Στο τέλος κατάφεραν να δείξουν ότι μόνο το ήλιο, το δευτέριο και το λίθιο κοσμολογικά λείψανα, σύμφωνα με τους λεπτομερείς υπολογισμούς από το Bob Wagoner, τον Willy Fowler και τον Fred Hoyle το 1967.






Οι Geoffrey και Margaret Burbidge, Fowler και Hoyle είχαν δείξει προηγουμένως ότι τα βαρέα στοιχεία ­ δηλαδή από τον άνθρακα και μετά ­ έγιναν στα αστέρια. Και το 1972 αποδείχθηκε πλήρως ότι τα υπόλοιπα ελαφρά στοιχεία (βηρύλλιο και βόριο) έγιναν από τις κοσμικές ακτίνες, που διαπέρασαν μέσα από τους διαστρικούς πυρήνες ηλίου.






Στη δεκαετία του ’70 επιστημονικές ομάδες στο Princeton, το Μπέρκλευ και τη Φλωρεντία ανίχνευσαν την πρώτη μικροσκοπική απόκλιση από την ισοτροπία στην Μικροκυματική Ακτινοβολία Υποβάθρου. Αυτή η λεγόμενη “ανισοτροπία διπόλων” φαίνεται ότι οφείλεται στην κίνηση του Γαλαξία μας μέσω του κοσμικού πλαισίου. Η επίδραση του φαινομένου αυτού είναι ότι ο μικροκυματικός ουρανός εμφανίζεται ελαφρώς θερμότερος προς την κατεύθυνση της κίνησής μας, κατά ένα τοις χιλίοις, και ελαφρώς πιό ψυχρός στην αντίθετη κατεύθυνση.














Σχήμα 2


Χάρτης Του Ουρανού, που βασίστηκε σε δεδομένα (1991) του δορυφόρου COBE (Cosmic Background Explorer). Η μεσαία κόκκινη λωρίδα οφείλεται στις μικροκυματικές εκπομπές του Γαλαξία μας.






Οι χάρτες των γαλαξιών όλου του ουρανού, που δημιουργήθηκαν από τις έρευνες του IRAS επέτρεψαν στους αστρονόμους να αποδείξουν ότι αυτή η κίνηση οφειλόταν στη βαρυτική έλξη των γαλαξιών μέσα σε 300 μεγαπαρσέκ. Μάλιστα συνέχισε να βελτιώνεται η ακρίβεια με την οποία θα μπορούσε να μετρηθεί η ισοτροπία του Κοσμικού Υποβάθρου Μικροκυμάτων. Αργότερα το 1991 η ομάδα του Cosmic Background Explorer (COBE) ανήγγειλε ότι είχε ανιχνεύσει ανισοτροπίες με ακρίβεια 1 μέρος προς 100.000 σε μια γωνιακή κλίμακα 10° ( Σχήμα 2ο). Αυτές οι ανισοτροπίες ήταν οι πρώτες αποδείξεις των μικρών διακυμάνσεων της πυκνότητας από τις οποίες πρέπει να εξελίχθηκαν οι σημερινοί γαλαξίες και τα σμήνη των γαλαξιών.






Από τη δεκαετία του ’60 το φάσμα της μικροκυματικής ακτινοβολίας υποβάθρου είχε φανεί ότι αντιστοιχούσε σε ένα μέλαν σώμα περίπου 2.7 Κelvin. Αυτές οι μετρήσεις έφθασαν στο αποκορύφωμά τους το 1990 όταν έδειξε η ομάδα του COBE ότι είχε μετρήσει το τέλειο φάσμα κατά Planck, με ακρίβεια ένα μέρος προς χίλια. Αυτή η μορφή μέλανος σώματος κατά Planck είναι οι ισχυρότερες πιθανές αποδείξεις για ένα Σύμπαν το οποίο δημιουργήθηκε με μία Μεγάλη Έκρηξη (Big Bang) και με μια ακτινοβολία που την εξουσίαζε στην αρχική του φάση.






ΣΤ! Σχηματισμός των γαλαξιών και των σμηνών






Οι γαλαξίες και τα σμήνη των γαλαξιών θεωρούνται πως προέρχονται από τα αποτελέσματα της βαρύτητας πάνω στις μικρές διακυμάνσεις της πυκνότητας, που παρουσιάζονταν στις αρχικές φάσεις του Σύμπαντος. Αυτή η ιδέα αναπτύχθηκε αρχικά από τους Jim Peebles και Yakov Zel’dovich προς το τέλος της δεκαετίας του ’60. Αλλά μέχρι το 1980 ήταν σαφές ότι ο υψηλός βαθμός ισοτροπίας του Κοσμικού Υποβάθρου Μικροκυμάτων, έθεσε τα προβλήματα για ένα Σύμπαν που περιέχει μόνο την συνηθισμένη “βαρυονική” ύλη, δηλ. νετρόνια και πρωτόνια.






Όμως για να είναι σε θέση να σχηματισθούν οι γαλαξίες μέχρι σήμερα, ήταν απαραίτητο οι διακυμάνσεις να εμφανίστηκαν και με την ύπαρξη κάποιων μη-βαρυονικών συστατικών. Προκειμένου να ξεκινήσει ο σχηματισμός δομών αυτά τα μη-βαρυονικά στοιχεία πρέπει να έχουν αποσυνδεθεί από την ακτινοβολία, που δημιουργήθηκε στο Big Bang, πολύ πριν δημιουργηθούν τα βαρυόνια. Με άλλα λόγια, δεν μπορούν να γίνουν οι γαλαξίες εκτός αν ο Κόσμος εξουσιάζεται από τη “σκοτεινή ύλη” που, εξ ορισμού, δεν ακτινοβολεί. Κατά συνέπεια η εμφάνιση της σκοτεινής ύλης ήταν η αιτία που βρισκόμαστε όλοι σήμερα εδώ, με τη μορφή της βαρυονικής ύλης.






Ο Zel’dovich πρότεινε ότι ότι ένα νετρίνο με μια μάζα μερικών δεκάδων ηλεκτρονιοβόλτ (eV) θα μπορούσε να σχηματίσει την “θερμή σκοτεινή ύλη”, που ονομάζεται έτσι επειδή τα νετρίνα θα μπορούσαν να κινούνται με ταχύτητες κοντά στην ταχύτητα του φωτός. Υποστήριξε ότι μια τέτοια θερμή σκοτεινή ύλη θα μπορούσε να εξηγήσει την προέλευση της δομής σε ένα σχηματισμό της μορφής “από το μεγάλο προς το μικρό”, με τα σμήνη δηλαδή να σχηματίζονται πρώτα και τα οποία τεμαχίστηκαν αργότερα σε γαλαξίες. Οι προσομοιώσεις με υπολογιστές έδειξαν, εντούτοις, ότι αυτό το μοντέλο δεν λειτούργησε και ότι το εναλλακτικό σενάριο της “ψυχρής σκοτεινής ύλης” λειτούργησε στις προσομοιώσεις πολύ καλύτερα.






Αυτό θα οδηγούσε σε ένα σχηματισμό δομών “από τα μικρότερα στοιχεία προς τα μεγαλύτερα”. Έτσι στο μοντέλο αυτό οι γαλαξίες σχηματίσθηκαν πρώτα και έπειτα συγχωνεύτηκαν για να σχηματισθούν τα σμήνη των γαλαξιών. Αυτή η προσέγγιση απαιτεί την παρουσία σωματιδίων σκοτεινής ύλης, τα οποία κινούνταν αργά στις απαρχές του Σύμπαντος. Αυτήν την χρονική περίοδο τα πιο επιτυχή σενάρια είναι βασισμένα στη ψυχρή σκοτεινή ύλη, με το δημοφιλέστερο υποψήφιο για τη σκοτεινή ύλη να είναι το ελαφρύτερο υπερσυμμετρικό σωματίδιο, το νετραλίνο (neutralino). Πράγματι, διάφορα υπόγεια πειράματα βρίσκονται εν εξελίξει για να προσπαθήσουν να ανιχνεύσουν αυτό το μυστηριώδες νετραλίνο..






Πάντως, είναι απαραίτητο να υπάρξει κι ένα πρόσθετο συστατικό για να ταιριάξει το παρατηρηθέν φάσμα των διακυμάνσεων της πυκνότητας σήμερα στο Σύμπαν. Οι προτάσεις για αυτό το πρόσθετο συστατικό περιλαμβάνουν μια πρόσθετη απωθητική δύναμη, η οποία ενεργεί σε μεγάλες κλίμακες, μια έννοια που εισήχθη αρχικά από τον Einstein το 1917 για να επιτύχει έναν στατικό Σύμπαν στο μοντέλο που υπολογίστηκε με βάση την Γενική Σχετικότητα. Θα μπορούσε επίσης να υπάρξει κι ένα δεύτερο συστατικό σκοτεινής ύλης υπό μορφή νετρίνο με μάζα μερικών ηλεκτρόνιο-βολτ.






Εν τω μεταξύ, πειράματα ατμοσφαιρικών νετρίνων εμφανίζουν να αποδεικνύουν ότι τουλάχιστον ένα είδος νετρίνο έχει μάζα διάφορη του μηδενός. Εντούτοις, κι αυτή η υπονοούμενη μάζα δεν είναι αρκετά μεγάλη για να έχει μια αρκετή κοσμολογική επίδραση, εκτός αν οι αστροφυσικοί στραφούν στα σενάρια της μη Καθιερωμένης Φυσικής (φυσική υπερχορδών).






Ένα σημαντικό συστατικό στη θεωρία της προέλευσης της δομής ήταν η εφεύρεση του πληθωρισμού από τον Alan Guth το 1980. Αυτή η θεωρία εισήχθη για να λύσει το ονομαζόμενο πρόβλημα των μαγνητικών μονόπολων καθώς και το πρόβλημα των οριζόντων στην κοσμολογία. Στο πρώτο πρόβλημα η αλλαγή φάσης, που συνδέεται με το σπάσιμο της συμμετρίας της μεγάλης ενοποιημένης δύναμης στο αρχικό στάδιο του Σύμπαντος, είναι πιθανόν να έχει παραγάγει μια υψηλή πυκνότητα από αυτά τα μαγνητικά μονόπολα. Εντούτοις κανένας αστροφυσικός δεν τα έχει παρατηρήσει. Το πρόβλημα των οριζόντων προκύπτει όταν κοιτάξουμε στο μικροκυματικό υπόβαθρο σε αντίθετες κατευθύνσεις. Πώς είναι δυνατόν δύο περιοχές του Σύμπαντος, που ποτέ δεν είχαν αιτιακή επαφή σύμφωνα με το Καθιερωμένο Μοντέλο της επέκτασης του Σύμπαντος, να κατορθώσουν να είναι όμοια;






Η αρχική ιδέα του πληθωρισμού ήταν ότι στην εποχή του σπασίματος της συμμετρίας, το Σύμπαν θα ήταν σε μια κατάσταση “ψευδοκενού”. Αυτό θα ενεργούσε σαν μια τεράστια κοσμολογική άπωση και θα οδηγούσε σε μια εκθετική διαστολή για αρκετό χρόνο (περίπου 10 ­32 sec) για να λύσει το πρόβλημα των οριζόντων. Η ενέργεια του κενού θα μετατρεπόταν έπειτα σε ύλη και ακτινοβολία. Με αυτή τη διαδικασία θα είχαν παραχθεί και οι απαιτούμενες μικρές, αρχέγονες διακυμάνσεις πυκνότητας, και η κανονική διαστολή, που παρατήρησε ο Hubble, θα είχε επαναληφθεί. Μάλιστα από τότε έχουν δημιουργηθεί πολλές παραλλαγές αυτής της γενικής ιδέας.






Ζ! Η σημερινή κατάσταση και οι μελλοντικές προοπτικές






Σχήμα 3. Οι πιο απομακρυσμένοι γαλαξίες, που έχουν φωτογραφηθεί απέχουν αποστάσεις της τάξης των 12 δισεκατομμυρίων ετών.






Στο τέλος του 20ου αιώνα, βρήκε την αστροφυσική και την κοσμολογία να βρίσκονται σε ένα πολύ υψηλό επίπεδο. Αλλά φαίνεται να μην υπάρχει κανένα τέλος στον πλούτο των νέων ανακαλύψεων. Το Hubble Deep Field ­ ένας χάρτης μιας μικρής περιοχής του Ουρανού σε πολύ μεγάλο βάθος, που έγινε με το διαστημικό τηλεσκόπιο Hubble ­ έχει επεκτείνει χρονολογικά προς τα πίσω την εικόνα που έχουμε, όταν σχηματίζονταν τα αστέρια μέσα στους γαλαξίες, την εποχή που το Σύμπαν ήταν μόνο στο 10% της σημερινής ηλικίας του (η εικόνα 3, δείχνει ακριβώς πως ήταν το σύμπαν εκείνη την εποχή).






Εν τω μεταξύ, οι έρευνες στο Hubble Deep Field με υπέρυθρες ακτίνες και σε μήκη κύματος κάτω από το 1 χιλιοστό, χρησιμοποιώντας τον ISO και το τηλεσκόπιο James Clerk Maxwell στη Χαβάη, έχουν δείξει ότι οι περισσότεροι σχηματισμοί αστεριών στους γαλαξίες κρύβονται από μπροστά μας από τη μεσογαλαξιακή και διαστρική σκόνη.






Η νέα γενιά των τηλεσκοπίων των 8 και 10 μέτρων καθιστά τη φασματοσκοπία των πολύ απόμακρων γαλαξιών σχεδόν ρουτίνα. Επιτρέπουν επίσης τον προσδιορισμό των απόμακρων υπερκαινοφανών, που εμφανίζονται να δείχνουν ότι η διαστολή του Σύμπαντος είναι επιταχυνόμενη, που πιθανώς να οφείλεται στη μυστήρια κοσμολογική άπωση, όπως αναφέρθηκε πιο πάνω. Τον τελευταίο καιρό προσεκτικές φασματοσκοπικές αναζητήσεις έχουν ανακαλύψει εκατό περίπου πλανήτες στο μέγεθος του Δία, να περιστρέφονται γύρω από τα γονικά τους αστέρια.






Τον τελευταίο καιρό έχουν αρχίσει να ανιχνεύονται μυστήριες εκρήξεις των ακτίνων-γ. Αυτά τα έντονα ξεσπάσματα της ακτινοβολίας γάμμα έχουν παρατηρηθεί σε κοσμολογικές αποστάσεις και φαίνονται να αφορούν την καταστροφή ενός αστεριού νετρονίων και το σχηματισμό μιας μαύρης τρύπας.






Έναν ανάλογο χάρτη με αυτόν που έφτιαξε η αποστολή WMAP αλλά πολύ πιο λεπτομερή θα φτιάξει και η αποστολή Planck






Ο εκρηκτικός ρυθμός της προόδου είναι πιθανό να συνεχιστεί τουλάχιστον και στις επόμενες δεκαετίες. Και η NASA και η Ευρωπαϊκή Διαστημική Εταιρεία (ESA) προγραμματίζουν μελλοντικές αποστολές για να χαρτογραφήσουν το μικροκυματικό υπόβαθρο. Η διαστημοσυσκευή χαρτογράφησης της ανισοτροπίας της μικροκυματικής ακτινοβολίας (WMAP) και η αποστολή του διαστημικού παρατηρητηρίου Planck μπορούν να καθορίσουν με πρωτοφανή ακρίβεια τις περισσότερες από τις βασικές κοσμολογικές παραμέτρους, και να εξετάσουν την προέλευση αυτών των διακυμάνσεων της πυκνότητας.






Η αποστολή της ESA στην περιοχή μηκών κυμάτων της τάξεως του υποχιλιοστού FIRST, και το δίκτυο των ΗΠΑ-Ευρώπης ALMA, όπως και το διαστημικό τηλεσκόπιο της επόμενης γενιάς της NASA θα εξετάσουν μαζί (σαν ένα συμπληρωματικό τρίο), τον σχηματισμό αστεριών στο αρχικό Σύμπαν. Εν τω μεταξύ, αποστολές όπως τη Gaia, Darwin και η Διαστημική Αποστολή Συμβολομετρίας θα προσπαθήσουν να φέρουν την πρόοδο στην ανακάλυψη και την κατανόηση των πλανητικών συστημάτων.






Επίσης μια σειρά επίγειων πειραμάτων και, τελικά, την Διαστημική Αποστολή Κεραιών Συμβολομετρίας με λέιζερ της ESA, πρέπει επιτέλους να κάνει την αστρονομία των βαρυτικών κυμάτων μια πραγματικότητα. Και ήδη αρχίζουν να κυκλοφορούν οι ιδέες για ένα επίγειο οπτικό τηλεσκόπιο με έναν καθρέφτη διαμέτρου των 100 μέτρων.






Από την εποχή των αρχαίων Ελλήνων όλες οι πρόοδοι στη φυσική έχουν βρει άμεση εφαρμογή στην αστροφυσική και την κοσμολογία. Και επανειλημμένως η αστρονομία είναι η οδηγός δύναμη για σημαντικές ανακαλύψεις στη φυσική. Η κατανόησή μας για τον αστροφυσικό Κόσμο έχει προωθηθεί ανυπολόγιστα από την αρχή του 20ου αιώνα.






Και καθώς εισήλθαμε στην επόμενη χιλιετία, δεν φαίνεται να εξαντλείται η φλέβα των ανακαλύψεων στην Αστροφυσική.

Η ζωή και το έργο του Γαλιλαίου.

Ο Γαλιλαίος υπήρξε διάσημος Ιταλός φυσικός, μηχανικός και αστρονόμος, ένας από τους θεμελιωτές της φυσιογνωσίας, ποιητής, φιλόλογος και κριτικός. Γεννήθηκε στις 18 Φεβρουαρίου 1564 (ημέρα που πέθανε ο Μιχαήλ Άγγελος και έτος που γεννήθηκε ο Σαίξπηρ), στην Πίζα της Τοσκάνης, σχεδόν στη σκιά του περίφημου κυρτού πύργου της, που τόσο μεγάλο ρόλο έπαιξε στην αναγέννηση της επιστήμης. Πέθανε στις 8 Ιανουαρίου 1642 στο Αρτσέτρι της Φλωρεντίας, έτος που γεννήθηκε ο Νεύτων.




O πατέρας του Βικέντιος καταγόταν από οικογένεια ευγενών, που όμως πτώχευσε και διακρινόταν για την επίδοση του στη μουσική. Επέδρασε σημαντικά στην καλλιέργεια και διαμόρφωση των ικανοτήτοον του Γαλιλαίου.



O Γαλιλαίος έως 11 χρονών ζούσε στην Πίζα, όπου έμαθε και τα πρώτα του γράμματα. Αργότερα η οικογένεια του εγκαταστάθηκε στη Φλωρεντία, Συνέχισε τη μόρφωση του στο μοναστήρι του Βαλλομπρόζο, όπου έγινε δεκτός ως δόκιμος για την ιδιότητα του μοναχού. Εκεί άρχισε να μελετά τα έργα των Ελλήνων και Λατίνων συγγραφέων. O πατέρας του όμως διακρίνοντας το ταλέντο του γιου του, τον απέσυρε από το μοναστήρι με το πρόσχημα βαριάς οφθαλμικής πάθησης και το 1581 τον έστειλε στο Πανεπιστήμιο της Πίζας για να σπουδάσει γιατρός, παρά τη μεγάλη κλίση του στα Μαθηματικά, εξαιτίας κυρίως της μεγάλης διαφοράς του μισθού. Ο καθηγητής των Μαθηματικών έπαιρνε 60 σκούδα ετησίως, ενώ της Ιατρικής 2.000 σκούδα ετησίως



Εκεί, γρήγορα φάνηκαν τα προσόντα του και ιδιαίτερα η τάση του να μην παραδέχεται χωρίς συζήτηση τη δογματική διδασκαλία των καθηγητών του ή τις γνώμες των μεγάλων της αρχαιότητας, πράγμα που δυσαρεστούσε τους συναδέλφους του και που γι’αυτό οι συμφοιτητές του τον αποκαλούσαν «ο καβγατζής».



Σε ηλικία 18 ετών, παρακολουθώντας τη λειτουργία στον καθεδρικό ναό της Πίζας παρατήρησε, συγκρίνοντας με το σφυγμό του – το μόνο ρολόι που διέθετε -, ότι ο χρόνος αιώρησης του πολυελαίου (υπάρχει ακόμη), παρέμενε ο ίδιος ως την απόσβεση της και έτσι ανακάλυψε και κατασκεύασε το εκκρεμές, που το βρήκαν χρησιμότατο οι γιατροί για τη σφυγμομέτρηση των ασθενών.



Εκεί για πρώτη φορά μελέτησε τη φυσική του Αριστοτέλη, που από την αρχή ακόμα δεν του φάνηκε πειστική. Επίσης στράφηκε προς τη μελέτη των αρχαίων μαθηματικών του Ευκλείδη και του Αρχιμήδη, που έγινε ο πραγματικός δάσκαλος του. Επειδή προσελκύστηκε ιδιαίτερα από τη γεωμετρία και μηχανική, εγκατέλειψε την ιατρική και επέστρεψε στη Φλωρεντία, όπου έμεινε 4 χρόνια μελετώντας μαθηματικά. To 1586 έγραψε την πρώτη του επιστημονική διατριβή για τον υδροστατικό ζυγό, όργανο που το είχε ανακαλύψει. Κυκλοφόρησε σε χειρόγραφο και πολύ αργότερα τυπώθηκε.



To 1589 έχοντας αποκτήσει φήμη από τα έργα του, διορίστηκε καθηγητής των Μαθηματικών για 3 χρόνια στο Πανεπιστήμιο της Πίζας με μισθό 5 σελίνια την εβδομάδα, τον οποίο συμπλήρωνε με ιδιωτικά μαθήματα.

Το Χάος.

Η αιώνια πάλη μεταξύ τάξης και αταξίας, αρμονίας και χάους, αντιπροσωπεύει, μάλλον μια βαθιά ριζωμένη αντίληψη του ανθρώπου για το σύμπαν. Γι’ αυτό και τη συναντάμε σε τόσους πολλούς μύθους για τη δημιουργία του κόσμου και σε τόσους πολλούς πολιτισμούς.




Το Χάος στις Κοσμογονίες

Το Χάος ήταν το πρώτο στοιχείο της κοσμογονίας των φιλοσόφων της αρχαίας Ελλάδας. Για πρώτη φορά το “Χάος” παρουσιάζεται στην Θεογονία του Ησιόδου (8ος αιώνας π.Χ.) σαν η πρωταρχική ύλη του Κόσμου που που οδηγείται μέσα από την εξελικτική πορεία μιας αέναης μεταβολής της ύλης και της κίνησης από το ομοιόμορφο στο πολύμορφο:



Το Χάος πρωτογίνηκε κι η Γη μετά η πλατυστήθα … Κι απ’ το Χάος πάλιν γεννήθηκε το Έρεβος και η τρίσμαυρη η Νύχτα…





Και μετά έρχεται η ισορροπία, η αρμονία και η ζωή. Αλλά η ανθρώπινη ζωή βιώνεται μέσα σε ένα χαοτικό κόσμο, την πολυπλοκότητα, τις αντιθέσεις και την αντίφαση που κυριαρχούν σε όλους τους τομείς της σκέψης και της ζωής. Από τις αντιθέσεις δε προκύπτει η τέλεια σύνθεση, όπου τυχαία και συγκεχυμένα στοιχεία της υπάρχουσας άπειρης ύλης, μορφοποιούνται σε συντεταγμένες καταστάσεις.



Ο Αναξιμένης (585 περίπου π.Χ.), ένας σοφός από τη Μίλητο και μαθητής του Αναξίμανδρου, δίνει την εξήγηση των διαφόρων μορφών της πρωταρχικής ύλης, του Χάους, με την πύκνωση και την αραίωση.



Ο Αναξαγόρας (500 περίπου π.Χ.), φιλόσοφος από τις Κλαζομενές, δέχεται ότι “όλα τα στοιχεία στην αρχή ήταν ανακατεμένα και συγκεχυμένα. Τα πάντα ήταν μέσα στα πάντα. Όλα όσα σήμερα είναι ξεχωρισμένα, αποτελούσαν μια μάζα αξεχώριστη και ηρεμούσα. Το μίγμα αυτό δεν θα έβγαινε από την ηρεμία του αν ο νους δεν έδινε σ’ αυτό την κίνηση και δεν το διαχώριζε”. Έτσι, ασχολείται με τα ασταθή, τυχαία, ανακατεμένα και συγκεχυμένα στοιχεία της πρωταρχικής άπειρης ύλης.



Στη “Γένεση” της Παλαιάς Διαθήκης “η Γη ην αόρατος και ακατασκεύαστος και σκότος εφέρετο υπεράνω της αβύσσου”.



Σ’ ένα πρώιμο βαβυλωνιακό έπος το σύμπαν γεννιέται απ’ το χάος που προκύπτει όταν μια ανυπάκουη οικογένεια Θεών της αβύσσου καταστρέφεται από τον πατέρα της. Το χάος είναι η αρχέγονη άμορφη μάζα από την οποία ο δημιουργός έπλασε την τάξη και το σύμπαν. Η τάξη ισοδυναμεί με το καλό, και η αταξία με το κακό. Η τάξη και το χάος φαίνονται σαν δύο αντίθετα πράγματα, σαν δύο πόλοι γύρω απ’ τους οποίους περιστρέφουμε τις ερμηνείες μας σχετικά με τον κόσμο.



Κάποια έμφυτη παρόρμηση κάνει την ανθρωπότητα να προσπαθεί να κατανοήσει την κανονικότητα στη φύση, να ερευνήσει τους νόμους που κρύβονται πίσω από την παράξενη πολυπλοκότητα του σύμπαντος, να βγάλει κάποια τάξη μέσα απ’ το χάος.



Στη σύγχρονη εποχή οι επιστήμονες, φυσικοί, βιολόγοι, μαθηματικοί, μηχανικοί, χημικοί και άλλοι, ερευνώντας διάφορα στοιχεία για να εξηγήσουν κάποιες αταξίες που κυριαρχούν στο χαοτικό οργανικό και ανόργανο κόσμο, οδηγούνται να βρουν τον τρόπο με τον οποίον θα μπορούσαν να μεταβάλουν σε κάθε περίπτωση τα πολύμορφα στοιχεία σε ομοιόμορφα, τα πολύπλοκα σε απλά, τα ασταθή σε σταθερά, τα τυχαία και απρόβλεπτα σε καθορισμένα.

Μποζόνιο Higgs : Το σωματίδιο του Θεού.

Το μποζόνιο Higgs μας περιμένει να το ανακαλύψουμε στο νέο επιταχυντή LHC στο CERN μετά το καλοκαίρι του 2008. Αλλά τι είναι; Γιατί να υπάρχει; Ή μήπως δεν υπάρχει και η θεωρία μας πρέπει να τροποποιηθεί δραματικά;








Ξέρουμε πολλά τώρα, μετά από δεκαετίες πειραμάτων στους μεγάλους επιταχυντές. Στον επιταχυντή Tevatron στο Fermilab, στους LEP 1 και 2 στο CERN, στον KEK-B στην Ιαπωνία, στον PEP2 στο SLAC, στον HERA του DESY στο Αμβούργο, κλπ Αλλά όλοι θα υποκλιθούν σύντομα στο Μεγάλο Συγκρουστή Αδρονίων : το LHC στο CERN. Αυτή η μηχανή, κατά πάσα πιθανότητα, θα απαντήσει στην ερώτηση: ποιά είναι η προέλευση της διάσπασης της ηλεκτρασθενούς συμμετρίας; Δηλαδή γιατί οι φορείς της ασθενούς πυρηνικής δύναμης, τα μποζόνια W και Z, έχουν μάζα (και μάλιστα μεγάλη μάζα) και το φωτόνιο δεν έχει καθόλου μάζα;



Κι αν φανούμε τυχεροί μπορούμε να φτάσουμε σε μια απάντηση στο ζήτημα αυτό: γιατί τα θεμελιώδη σωματίδια έχουν μάζες και γιατί έχουν τόση μάζα; Αλλά κι αν ακόμα το μάθουμε τι θα σημαίνει για μας; Και τι θα ακολουθήσει;



Βάσει του Καθιερωμένου Μοντέλου της σωματιδιακής Φυσικής στις πρώτες στιγμές του Κόσμου τα γνωστά υποατομικά σωματίδια, όπως είναι τα ηλεκτρόνια ή τα κουάρκ απέκτησαν τη μάζα τους μέσω μιας διαδικασίας που λέγεται μηχανισμός Higgs. Μάλιστα μπορεί η διαδικασία αυτή να εξακολουθεί να δρα στο παρασκήνιο και το σχετιζόμενο με αυτή σωματίδιο, το μποζόνιο Higgs, θεωρείται ότι κρύβεται ως ιδιότητα του κενού. Με την προσθήκη μιας μεγάλης ποσότητας ενέργειας σε έναν πολύ μικρό χώρο, είναι δυνατός ο εξαναγκασμός σε "εμφάνιση" του σωματιδίου Higgs.



Με άλλα λόγια πιστεύουμε ότι ολόκληρο το σύμπαν διαπερνάται από ένα «πεδίο Higgs», το οποίο σχετίζεται με ένα τουλάχιστον σωματίδιο που δεν έχει ακόμη ανιχνευθεί, το μποζόνιο Higgs. Σε αυτό το πλαίσιο, όλα τα σωματίδια της ύλης που γνωρίζουμε αποκτούν μάζα μέσω της αλληλεπίδρασης τους με αυτό το πεδίο. Κι όσο περισσότερο αλληλεπιδρά ένα σωματίδιο με το πεδίο Higgs, τόσο μεγαλύτερη αντίσταση συναντά στην κίνηση του και κατά συνέπεια τόσο βαρύτερο είναι.



Μέχρι τώρα μόνο ο επιταχυντής σωματιδίων Tevatron στο εργαστήριο Fermilab είχε την ικανότητα της δημιουργίας μιας ενεργητικής δέσμης. Στο Tevatron συγκεκριμένα συγκρούονται πρωτόνια με αντι-πρωτόνια με ενέργεια 2000 φορές περίπου μεγαλύτερη από την ενέργεια ηρεμίας του πρωτονίου. Μετά το καλοκαίρι του 2008 όμως η μέγιστη ενέργεια αλληλεπίδρασης σωματιδίων αναμένεται να γίνει 15.000 φορές μεγαλύτερες από τη μάζα ηρεμίας του πρωτονίου, κι αυτό θα συμβεί στο Μεγάλο Επιταχυντή Αδρονίων (LHC) κοντά στη Γενεύη.



Λόγω της δομής των πρωτονίων και αντιπρωτονίων - αποτελούνται από τρία κουάρκ - ως βλήματα σε έναν επιταχυντή σωματιδίων, θα παραχθούν δεκάδες σωματίδια μαζί με αυτά που παρουσιάζουν ερευνητικό ενδιαφέρον (όπως είναι τα μποζόνια Higgs) σε κάθε σύγκρουση. Για την ανίχνευση των μποζονίων Higgs ξέρουμε ήδη από προηγούμενες θεωρίες ότι αποκλείονται να έχουν με άμεσο ή έμμεσο τρόπο μάζα μικρότερη των 114 GeV.



Το Καθιερωμένο Μοντέλο για τις ιδιότητες και αλληλεπιδράσεις των δομικών μονάδων του Κόσμου μας μπορεί να πρόσφερε απαντήσεις σε πληθώρα ερωτήματα και προβλήματα, αλλά δημιούργησε και σημαντικά προβλήματα όπως είναι το πρόβλημα της προέλευσης της μάζας.



Μέχρι της αρχές της δεκαετίας του 1930, τα γνωστά θεμελιώδη σωματίδια ήταν μόνο δύο: το ηλεκτρόνιο και το πρωτόνιο. Με την ανακάλυψη του νετρονίου, του ποζιτρονίου, του μιονίου, του πιονίου και των νετρίνων ξεκίνησε μια νέα εποχή της σωματιδιακής Φυσικής. Η τεχνολογική εξέλιξη των επιταχυντών ήταν αυτή που επέτρεψε την αύξηση της ενέργειας τους κατά 10 φορές ανά δεκαετία περίπου, και προσέφερε ένα ολόκληρο φάσμα από νέα σωματίδια με μια ευρεία περιοχή μαζών. Το γεγονός ότι τα σωματίδια που ανακαλύφθηκαν είχαν διαφορετικές μάζες το καθένα, ανάγκαζε τους φυσικούς να απαντήσουν επιτακτικά στο ερώτημα της προέλευσης της μάζας όλων αυτών των σωματιδίων. Αργότερα κατάλαβαν ότι πρέπει να υπάρχει κάποιος βασικός μηχανισμός που να καθορίζει τις μάζες των νέων σωματιδίων, αλλά δεν υπήρχε κάποιο ικανοποιητικό θεωρητικό υπόβαθρο ή μοντέλο που να προσεγγίζει έστω τον μηχανισμό αυτό.



Στη δεκαετία του '60 οι εξελίξεις στη θεωρητική και πειραματική φυσική επέτρεψαν την ανάπτυξη του Καθιερωμένου Μοντέλου για την εξήγηση όλων σχεδόν των πειραματικών δεδομένων, μέσω της περιγραφής τους με τα κβαντικά πεδία βαθμίδας. Η περιγραφή αυτή έδωσε εκπληκτικές συμφωνίες ανάμεσα στα πειραματικά δεδομένα και τις διάφορες θεωρίες.



Με τη βοήθεια της ηλεκτρασθενούς θεωρίας, που περιγράφει την ηλεκτρομαγνητική και την ασθενή πυρηνική αλληλεπίδραση με ενιαίο τρόπο, οι μάζες των σωματιδίων της ύλης καθώς και των σωματιδίων "φορέων" της αλληλεπίδρασης προέρχονται από την αλληλεπίδραση με το σωματίδιο Higgs, χωρίς όμως να μπορεί να εξηγήσει κάτι παραπάνω για την προέλευση τους ή την ιεραρχική τους κατανομή βάσει μεγέθους. Ουσιαστικά δηλαδή οι μάζες των σωματιδίων της ύλης παρουσιάζονται στο Καθιερωμένου Μοντέλο ως ελεύθερες φαινομενικά παράμετροι. Από την άλλη πλευρά, στην κβαντική χρωμοδυναμική (που περιγράφει την ισχυρή πυρηνική αλληλεπίδραση) η προέλευση των μαζών των κουάρκ περιλαμβάνεται στην όλη περιγραφή, όχι όμως και η προέλευση των μαζών των λεπτονίων. Έτσι, στο Καθιερωμένο Μοντέλο οι μάζες των κουάρκ προέρχονται από τη θεώρηση της ισχυρής αλλά και της ηλεκτρασθενούς αλληλεπίδρασης, τοποθετώντας τα σε μια κατά κάποιον τρόπο "πλεονεκτική" θέση.



Ιστορικά οι κλίμακες μάζας και ενέργειας που παρατηρούνται διαδραμάτισαν κεντρικό ρόλο στην ανάπτυξη της Φυσικής των υποατομικών φαινομένων. H κανονικότητα στο φάσμα μαζών αποτελεί ταυτόχρονα ένδειξη αλλά και δοκιμασία για την ανάπτυξη των σχετικών θεωριών. Ας αναλογιστεί κανείς ότι τα ενεργειακά επίπεδα του ατόμου του υδρογόνου οδήγησαν στην ανάπτυξη της κβαντομηχανικής, και το φάσμα μαζών των αδρονίων (σωματιδίων που "αισθάνονται" και την ισχυρή πυρηνική αλληλεπίδραση) στη συμμετρία SU(3), στο μοντέλο των κουάρκ, στην κβαντική χρωμοδυναμική και στη θεωρία των χορδών. Σε αντίθεση, το φάσμα μαζών των λεπτονίων δεν προσφέρει κάποια ένδειξη για τη δυναμική του πεδίου Higgs διότι δεν χαρακτηρίζεται από κανονικότητα.



Σήμερα πιστεύουμε ότι ο μηχανισμός βάσει του οποίου αποκτούν μάζα τα σωματίδια της ύλης προαπαιτεί την ύπαρξη ενός πεδίου - του πεδίου Higgs - το οποίο γίνεται αισθητό παντού ακόμα και στο κενό. Το πεδίο αυτό είναι υπεύθυνο για τη δημιουργία της μάζας των σωματιδίων μέσω της αλληλεπίδρασης του με αυτά. Η αλληλεπίδραση ενός σωματιδίου και του πεδίου Higgs προσφέρει ένα πλεόνασμα δυναμικής ενέργειας Higgs Ε στο σωματίδιο και αυτό αντιστοιχεί στη μάζα του σωματιδίου (με τη βοήθεια της εξίσωσης E = mc2).



Οι δε διαφορετικές μάζες των σωματιδίων εξηγούνται αν δεχθούμε ότι αυτά αλληλεπιδρούν με το πεδίο Higgs με διαφορετική ισχύ, το γιατί όμως οι αλληλεπιδράσεις διαφορετικών σωματιδίων με το πεδίο Higgs είναι διαφορετικές παραμένει άλυτο πρόβλημα μέχρι σήμερα.



Η ύπαρξη του πεδίου Higgs προϋποθέτει και την ύπαρξη του σωματιδίου Higgs - του φορέα του πεδίου αυτού. Η μελλοντική ανακάλυψη του σωματιδίου αυτού θα επαληθεύσει την ύπαρξη και του πεδίου Higgs και τη θεωρία των φυσικών για την προέλευση της μάζας. Είναι δε προφανές ότι ένα σωματίδιο με μεγάλη μάζα αλληλεπιδρά με το πεδίο Higgs - και κατ' επέκταση με το σωματίδιο Higgs - εντονότερα από ότι ένα σωματίδιο με μικρότερη μάζα. Η συμπεριφορά αυτή που αναμένεται να εξιχνιαστεί στο Μεγάλο Επιταχυντή Αδρονίων (LHC) θα παίξει σημαντικό ρόλο την ανίχνευση του σωματιδίου Higgs.



Αλλά και το σωματίδιο Higgs αποκτά τη μάζα του μέσω της διαδικασίας της αυτο-αλληλεπίδρασης του πεδίου Higgs. H ένταση της αυτο-αλληλεπίδρασης όμως δεν είναι γνωστή και κατά συνέπεια δεν είναι γνωστή και η μάζα που αναμένεται να έχει το σωματίδιο Higgs. Η αδυναμία ακριβούς προσδιορισμού της μάζας του σωματιδίου Higgs σημαίνει ότι η προσπάθεια ανεύρεσης του πρέπει να επικεντρωθεί σε όλες τις κλίμακες μαζών που θα μπορούσε αυτό να έχει. Πειραματικά αυτό δημιουργεί πολλαπλά προβλήματα γιατί ανάλογα με την κλίμακα μάζας την οποία ερευνούν οι φυσικοί, πρέπει να χρησιμοποιήσουν και διαφορετικές τεχνικές. Ακόμη και αν βρεθεί το σωματίδιο Higgs σε μια συγκεκριμένη ενέργεια/μάζα, πρέπει να λάβουν χώρα πολλαπλές συμπληρωματικές μετρήσεις για να προσδιοριστούν οι ιδιότητες του καθώς και η ύπαρξη ή όχι κι άλλων σωματιδίων Higgs, όπως για παράδειγμα προβλέπονται από θεωρίες που προεκτείνουν το Καθιερωμένο Μοντέλο, όπως είναι η υπερ-συμμετρία.



Τέλος, σημαντικό γεγονός θα είναι και η μη ανίχνευση του σωματιδίου Higgs στα νέα πειράματα, γεγονός που δεν αποκλείεται. Αυτό θα αναγκάσει τους φυσικούς να αναπτύξουν μια νέα προσέγγιση για ένα μεγάλο μέρος των σημερινών θεωριών σχετικά με τη δομή της ύλης.



Ιστορικά πειράματα στο LEP και Tevatron για την ανίχνευση του σωματιδίου Higgs



Για πολλά χρόνια στον επιταχυντή LEP του CERN, έγιναν πειράματα για την παρατήρηση των μποζονίων W και Z - των φορέων της ασθενούς αλληλεπίδρασης. Στον επιταχυντή αυτό συγκρούονται μια δέσμη ηλεκτρονίων με μια δέσμη ποζιτρονίων, οπότε μελετάται η παραγωγή σωματιδίων Z καθώς και η διάσπαση τους. Όταν παράγεται ένα μποζόνιο Z, μπορεί περιστασιακά να δώσει μποζόνιο Higgs και ένα "εικονικό" Ζ που σχεδόν αμέσως διασπάται. Για την περίπτωση του σωματιδίου Higgs, η μάζα του αναμενόταν να ήταν ίση ή μικρότερη της συνολικής ενέργειας σύγκρουσης σωματιδίων στον επιταχυντή. Η αντίδραση που έπαιξε πρωταρχικό ρόλο στις άκαρπες προσπάθειες για την ανακάλυψη του σωματιδίου Higgs είναι η ακτινοβολία ενός Higgs από ένα σωματίδιο Z, το οποίο μετέπειτα διασπάται σε δύο λεπτόνια. Το σωματίδιο Higgs που παράγεται με αυτό τον τρόπο θα διασπαστεί κυρίως σε ζεύγη από βαριά φερμιόνια - όπως b και αντι-b κουάρκ -, λεπτόνιο ταυ και αντι-ταυ, c και αντι-c κουάρκ, ενώ δεν αναμένεται να ανιχνευτούν διασπάσεις του σε ελαφρότερα σωματίδια όπως μιόνιο και αντι-μιόνιο, ηλεκτρόνιο και ποζιτρόνιο ή δύο φωτόνια. Στην πρώτη φάση πειραμάτων του LEP αποκλείστηκε η,ύπαρξη του σωματιδίου Higgs με μάζα μέχρι τα 65 GeV. Με τη δεύτερη φάση λειτουργίας του πειράματος, αφού αναβαθμίστηκε ο επιταχυντής, αποκλείστηκε η ύπαρξη του σωματιδίου Higgs με μάζα μέχρι τα 114 GeV, αλλά ταυτόχρονα είχαμε και κάποιες ενδείξεις για την ύπαρξη του με μάζα 115 GeV. Τα πειράματα αυτά όμως ήσαν στο ενεργειακό όριο του επιταχυντή LEP και γι αυτό ήταν επιβεβλημένη η παύση της λειτουργίας του, έτσι ώστε να προχωρήσει η κατασκευή του νέου επιταχυντή LHC και των ανιχνευτών που θα λειτουργήσουν σε αυτόν.



Με τον νέο επιταχυντή, οι ενεργειακές κλίμακες που αποτελούν αντικείμενο έρευνας για την ανακάλυψη του σωματιδίου Higgs είναι εφικτές. Το γεγονός αυτό, σε συνδυασμό με την ιδιαίτερα υψηλή φωτεινότητα των δεσμών του LHC (αριθμός σωματιδίων στις δέσμες), θα επιτρέψει τη σίγουρη απάντηση στο ερώτημα της ύπαρξης ή όχι του σωματιδίου Higgs και της ποσότητας της μάζας του.



Ο επιταχυντής Tevatron έχει διαδραματίσει μέχρις στιγμής σπουδαίο ρόλο στην σωματιδιακή φυσική, με την ανακάλυψη το 1995 του βαρύτερου κουάρκ που απαντάται στη φύση, του top κουάρκ. Το τελευταίο ήταν ένα σημαντικό κλειδί για το ξεκλείδωμα της υπόθεσης του μποζονίου Higgs, επειδή η μάζα του Higgs μπορεί να υπολογιστεί, κατά προσέγγιση, εάν ξέρουμε τη μάζα του top κουάρκ, του μποζονίου W, και πώς συμπεριφέρεται το μποζόνιο Ζ στην παραγωγή και τις διασπάσεις του. Από τα προηγούμενα μεγέθη υπολογίσαμε έτσι ότι το Higgs πρέπει να έχει μια μάζα που να είναι περίπου στα 120 GeV/c2



Στον επιταχυντή Tevatron συγκρούονταν πρωτόνια με αντι-πρωτόνια και ουσιαστικά η αλληλεπίδραση γίνεται μεταξύ των κουάρκ που τα αποτελούν. Από το 2001 μάλιστα έγιναν πολλά πειράματα για την ανακάλυψη του σωματιδίου Higgs χωρίς όμως αποτέλεσμα στην περιοχή των 180 GeV, ανεβάζοντας έτσι το ελάχιστο όριο των 114 GeV του επιταχυντή LEP.



Στις συγκρούσεις αυτές του Tevatron αναμέναμε να ήταν τρεις οι κύριοι μηχανισμοί που θα μπορούσαν να οδηγήσουν στην παραγωγή και ανίχνευση ενός σωματιδίου Higgs: Πρώτον, η σύντηξη δύο γκλουονίων, δεύτερον η παραγωγή και μετέπειτα διάσπαση ενός μποζονίου Z, και τέλος η άμεση παραγωγή ενός σωματιδίου Higgs το οποίο διασπάται σε δύο μποζόνια W.



Εάν η μάζα του σωματιδίου Higgs βρίσκεται μεταξύ των τιμών 115 και 130 GeV, ο καλύτερος τρόπος ανίχνευσης του είναι μέσω της παραγωγής ενός μποζονίου Z το οποίο ακτινοβολεί ένα σωματίδιο Higgs και διασπάται μετέπειτα. Το σωματίδιο Higgs διασπάται επίσης, κατά κανόνα σε ένα b και σε ένα αντι-b κουάρκ. H διαδικασία αυτή είναι όμοια με τη διαδικασία ανίχνευσης που ακολουθήθηκε στον επιταχυντή LEP και ουσιαστικά αποτελεί τη συνέχεια της σε λίγο υψηλότερες ενέργειες. Εάν η μάζα του σωματιδίου Higgs είναι μεγαλύτερη των 130 GeV ο καλύτερος τρόπος ανίχνευσης είναι μέσω της διάσπασης του σωματιδίου Higgs σε ένα ζεύγος μποζονίων W. Η σύντηξη δύο γκλουονίων αναφέρεται κυρίως στην παραγωγή σωματιδίων Higgs με μεγαλύτερη μάζα καθώς και πολλαπλών σωματιδίων Higgs που προβλέπονται από θεωρίες που επεκτείνουν το καθιερωμένο μοντέλο.



Η τελευταία περίπτωση (σύντηξη δύο γκλουονίων) θεωρείται ως η πιο κατάλληλη για το περιβάλλον του νέου επιταχυντή LHC. Οι δυσκολίες όμως ανίχνευσης είναι πολλές. Γιατί από τον συνολικό αριθμό των συγκρούσεων που θα παρατηρηθούν, λίγες χιλιάδες μόνο θα καταλήξουν στη δημιουργία του σωματιδίου Higgs και από αυτές ένα μικρό μόνο ποσοστό είναι δυνατόν να ανιχνευθεί. Γι αυτό το λόγο, επειδή είναι δύσκολή η παραγωγή ικανοποιητικών δεδομένων, τέτοια πειράματα λειτουργούν για πολλά χρόνια.



Γιατί το σωματίδιο Higgs πρέπει να υπάρχει - Από την ιστορία της Φυσικής



Μια από τις μεγαλύτερες ανακαλύψεις του 20ού αιώνα είναι ότι αναγνωρίσαμε πως σε κάθε συμμετρία στη φύση αντιστοιχεί μια κάποια φυσική ποσότητα που διατηρείται. Γι αυτή την εργασία της η Emmy Noether δυστυχώς δεν κέρδισε ποτέ βραβείο Νόμπελ. Οι συμμετρίες είναι όλες γύρω μας - μερικές είναι πολύ απλές, και μερικές όχι και τόσο απλές. Παραδείγματος χάριν, θεωρήστε τη χρονική συμμετρία. Οι νόμοι της φυσικής είναι οι ίδιοι τώρα όπως ήταν και πριν από λίγο, και θα είναι οι ίδιοι 100 χρόνια από τώρα. Ή πιο απλά: με τον χρόνο οι νόμοι παραμένουν ίδιοι. Αυτή η συμμετρία οδηγεί στην πραγματικότητα στη διατήρηση της ενέργειας. Επιπλέον, εάν κινείστε στο χώρο, οι νόμοι της φυσικής είναι οι ίδιοι. Αυτό οδηγεί στη διατήρηση της ορμής. Εάν ξαναγράψετε τους νόμους της φυσικής σε ένα πλαίσιο αναφοράς που περιστράφηκε 40 μοίρες ως προς αυτόν όπου τους γράφετε τώρα, αυτοί μένουν οι ίδιοι. Κι αυτό είναι η διατήρηση της στροφορμής.



Το 1960 δύο φυσικοί oι Steven Weinberg, και Abdus Salam ανακάλυψαν πως τα σωματίδια φορείς της ασθενούς δύναμης W+, W- και Z μπορεί να έχουν μάζα χωρίς όμως να σπάει η βασική συμμετρία βαθμίδας της ασθενούς πυρηνικής δύναμης. Χωρίς να εισαχθεί μια μάζα στη θεωρία - στις εξισώσεις της - θα μπορούσε να δημιουργείται αυτόματα (αυθόρμητα) μάζα ως αποτέλεσμα κάποιων αλληλεπιδράσεων στο πεδίο των ασθενών δυνάμεων, δηλαδή μέσω της ρήξης της βασικής συμμετρίας.



Είναι γνωστό ότι επειδή το φωτόνιο (φορέας της ηλεκτρικής δύναμης) δεν έχει μάζα, θα έπρεπε και τα W+, W- και Z (φορείς της ασθενούς αλληλεπίδρασης) να μην έχουν για να επιτευχθεί η ενοποίηση των ασθενών με τις ηλεκτρικές αλληλεπιδράσεις. Για να επιτευχθεί αυτό το αποτέλεσμα οι δύο φυσικοί εισήγαγαν ένα επιπλέον κβαντικό πεδίο προς τιμήν του Peter Higgs, που πρώτος έδωσε αυτή την ιδέα. Μέσω δε του Higgs πιστεύουμε ότι αποκτούν μάζα τα W+, W- και Z. Τα κβάντα Higgs είναι ένα μποζόνια χωρίς spin και μάζα αμφισβητούμενη όπως είδαμε πιο πάνω. Αν ήταν 'ελαφρύ' θα το βλέπαμε στον επιταχυντή LEP, ενώ αν είναι 'βαρύ' θα το δούμε στον LHC.





Ένα μεξικάνικο καπέλο επεξηγεί το θεώρημα Goldstone. Αν και το καπέλο είναι αναλλοίωτο κάτω από περιστροφές γύρω από έναν κατακόρυφο άξονα, μια μικρή σφαίρα θα μπορεί να κάτσει μακριά από τον άξονα συμμετρίας, κάπου στο χείλη του καπέλου, αλλά μπορεί και να κινηθεί ελεύθερα χωρίς δύναμη επαναφοράς γύρω από το χείλη. Η σπασμένη κατά προσέγγιση συμμετρία απεικονίζεται με ελαφρώς γερμένο το καπέλο, αυτό παράγει μια μικρή δύναμη επαναφοράς, ανάλογη με τη μικρή μάζα του πιονίου.



Η ιστορία του μποζονίου Higgs άρχισε το 1961, όταν ο Yoichiro Nambu, φυσικός στο Πανεπιστήμιο του Σικάγου, έδειξε ότι μία διαδικασία που ονομάζεται "αυθόρμητο σπάσιμο συμμετρίας", είναι σε θέση να εξηγήσει από που προέρχεται η μάζα. Για να καταλάβετε τι σημαίνει, φανταστείτε μια σφαίρα πάνω από ένα μεξικάνικο καπέλο (σχήμα). Αυτό το σχήμα είναι συμμετρικό, επειδή φαίνεται το ίδιο από όλες τις κατευθύνσεις. Εντούτοις, η σφαίρα δεν είναι σταθερή και η συμμετρία αυθόρμητα σπάει όταν πέφτει στο χείλος, στο άκρο του καπέλου. Αυτό μπορεί να φαίνεται απλό, αλλά το πεδίο Higgs πραγματικά είναι σαν ένα μεξικάνικο καπέλο.



Ένα έτος αργότερα ο Jeffrey Goldstone, του πανεπιστημίου του Καίμπριτζ, και δύο μελλοντικοί νομπελίστες, οι Abdus Salam και Steven Weinberg, έδειξαν ότι υπήρξε μια ρωγμή σε αυτήν την προσέγγιση. Η πρώτη συμβολή του Higgs στο πρόβλημα αυτό - που έγινε πριν 40 χρόνια - ήταν να δείξει ότι ο Goldstone και οι συνάδελφοί του είχαν κάνει επίσης ένα λάθος. Αυτή η σημαντική ανακάλυψη δημοσιεύθηκε στο Physics Letters.



Ο Higgs πήγε έπειτα για να δείξει ότι το αυθόρμητο σπάσιμο της συμμετρίας θα μπορούσε να εξηγήσει με ποιό τρόπο σωματίδια που ήταν ήδη γνωστά τότε μπορούσαν να αποκτήσουν τη μάζα τους. Επιπλέον, η θεωρία του Higgs πρόβλεψε την ύπαρξη αυτού που το περιγράφει ως το "εναπομείναντα σωματίδιο". Αυτό το νέο σωματίδιο ήταν το μποζόνιο Higgs.



Ο Higgs έστειλε αυτό το δεύτερο αποτέλεσμα στο ίδιο περιοδικό, Physics Letters, αλλά του είπαν ότι δεν ήταν κατάλληλο για σύντομη δημοσίευση και αναγκάστηκε να το στείλει σε ένα άλλο περιοδικό. Εντούτοις, άκουσε αργότερα μέσω ενός συναδέλφου ότι η εργασία του είχε απορριφθεί επειδή οι συντάκτες του περιοδικού θεώρησαν ότι "δεν ήταν σχετική προφανώς με τη φυσική". Αρχικά ο Higgs αγανάκτησε, αλλά αργότερα συνειδητοποίησε ότι το πρώτο σχέδιο της εργασίας του "ήταν ελλιπές". Της πρόσθεσε δύο παραγράφους και την έστειλε σε ένα αμερικανικό περιοδικό, το Physical Review Letters, όπου έγινε αποδεκτή.



Πάντως η επιστημονική κοινότητα της σωματιδιακής φυσικής χρειάστηκε πολύ χρόνο για να αναγνωρίσει τη σημασία αυτής της εργασίας που είχε κάνει ο φυσικός του Εδιμβούργου. Ο Higgs θυμάται τις συζητήσεις πάνω στην εργασία του στα δύσπιστα ακροατήρια στο Χάρβαρντ και στο Princeton. "Με αντιμετώπιζαν σαν τρελάρα", θυμάμαι. "Στο τέλος της ημέρας δέχονταν ότι δεν ήμουν, αλλά δεν συνειδητοποίησαν τι χρήσιμο θα μπορούσαν να κάνουν με την εργασία".



Τελικά, οι Weinberg και Salam - οι οποίοι είχαν δείξει ότι είχε κάνει λάθος ο Higgs - χρησιμοποίησαν το μηχανισμό Higgs για να κάνουν μία από τις μεγαλύτερες σημαντικές ανακαλύψεις στην ιστορία της φυσικής, όταν συνδύασαν τις ασθενείς και τις ηλεκτρομαγνητικές δυνάμεις σε μια ενιαία δύναμη την ηλεκτρασθενή. Οι Weinberg, Salam και ένας αμερικανός φυσικός, ο Sheldon Glashow, μοιράστηκαν το βραβείο Νόμπελ του 1979 για τη φυσική για αυτήν την εργασία, και το μποζόνιο Higgs έγινε κομμάτι της φυσικής σωματιδίων.



Αν και ο Higgs είναι λίγο γνωστός έξω από την κοινότητα της φυσικής, το όνομά του έγινε γνωστό στα βρετανικά ΜΜΕ το 2002 όταν δημοσιεύτηκε στο Scotsman μια διαφωνία του Higgs με τον Stephen Hawking. Σύμφωνα με τον Higgs, αυτός είχε κάνει μερικές παρατηρήσεις για έλλειψη επικοινωνίας μεταξύ του Hawking, που είναι πρώτιστα κοσμολόγος, και της κοινότητας των σωματιδιακών φυσικών. Τα δύο άτομα έχουν επιλύσει από τότε τις διαφορές τους, αν και ο Hawking ακόμα θεωρεί ότι το μποζόνιο Higgs δεν θα βρεθεί ποτέ.



Ο Higgs και χιλιάδες άλλοι φυσικοί φυσικά είναι βέβαιοι ότι θα παρουσιαστεί μια μέρα στον Μεγάλο Επιταχυντή Αδρονίων (LHC) του CERN. Εάν αυτό συμβεί τότε ο Higgs - και ενδεχομένως οι Englert και Brout - θα ετοιμάσουν τις βαλίτσες τους για την τελετή των βραβείων Νόμπελ στη Στοκχόλμη. Και εάν το μποζόνιο Higgs δεν μπορεί να βρεθεί στο LHC, οι φυσικοί θα έχουν ακόμα ένα τεράστιο πρόβλημα να λύσουν.





--------------------------------------------------------------------------------



Τα πιο κάτω σκίτσα προέρχονται από εκλαϊκευτική ιστοσελίδα του CERN για να βοηθήσουν στην κατανόηση του μηχανισμού Higgs, πώς δηλαδή τα σωμάτια απέκτησαν μάζα. (Από μια ιδέα του David Miller του Πανεπιστημιακού Κολεγίου του Λονδίνου)



1. Ο μηχανισμός Higgs





Για να κατανοήσουμε τον μηχανισμό Higgs, ας φανταστούμε μια συγκέντρωση φυσικών οι οποίοι βρίσκονται ομοιόμορφα κατανεμημένοι μέσα σε μια αίθουσα, και συζητούν με τους διπλανούς τους.



...Μια σημαντική φυσικός μπαίνει και διασχίζει την αίθουσα. Όλοι οι φυσικοί απ' όπου περνάει, έλκονται προς αυτήν και συνωθούνται γύρω της. Καθώς διασχίζει την αίθουσα, έλκει τα πρόσωπα που βρίσκονται κοντά της, ενώ αυτά που προσπέρασε, επιστρέφουν στις κανονικές αποστάσεις μεταξύ τους...

Επειδή πάντα υπάρχει ένας σωρός ανθρώπων γύρω της, αυτή αποκτά μεγαλύτερη μάζα απ' ότι θα είχε αν ήταν μόνη της. Αυτό υπονοεί ότι έχει τώρα περισσότερη ορμή για την ίδια ταχύτητα κίνησης. Δηλαδή, όταν κινείται είναι δυσκολότερο να σταματήσει, ενώ όταν σταματήσει, είναι δυσκολότερο να ξεκινήσει ξανά, διότι ο σωρός γύρω της πρέπει να κινηθεί και αυτός.







Στις τρεις διαστάσεις και με τις περιπλοκές που φέρνει η σχετικότητα, αυτός περίπου είναι ο μηχανισμός του Higgs. Ένα πεδίο, το πεδίο Higgs, θεωρείται ως υπόβαθρο σε όλο το χώρο. Απ' οπουδήποτε περνάει ένα σωματίδιο, το τελευταίο παραμορφώνει τοπικά το πεδίο Higgs.

Η παραμόρφωση αυτή που έχει ως αντίστοιχο τη συγκέντρωση των ανθρώπων γύρω από την σπουδαία φυσικό που εισέρχεται στην αίθουσα, γεννάει τη μάζα του σωματιδίου.



Η ιδέα προέρχεται από τη φυσική της στερεάς κατάστασης. Αντί για ένα πεδίο που γεμίζει όλο το χώρο, σ' ένα στερεό σώμα, υπάρχει το πλέγμα των θετικών ιόντων του κρυστάλλου. Όταν ένα ηλεκτρόνιο κινείται μέσα στο πλέγμα των ιόντων, τα ιόντα έλκονται από αυτό, κάνοντας έτσι τη φαινομενική μάζα του ηλεκτρονίου μα είναι ακόμη και 40 φορές μεγαλύτερη από του ελευθέρου ηλεκτρονίου.



Το πεδίο Higgs στο κενό, αποτελεί ένα τέτοιο είδος υποθετικού πλέγματος, που γεμίζει όλο το Σύμπαν. Χωρίς αυτό δεν θα μπορούσαμε να εξηγήσουμε γιατί τα σωματίδια Z και W που είναι οι φορείς των ασθενών αλληλεπιδράσεων, έχουν τόσο μεγάλη μάζα, ενώ το φωτόνιο που είναι ο φορέας της ηλεκτρομαγνητικής αλληλεπίδρασης, δεν έχει καθόλου μάζα.



2. Το μποζόνιο Higgs



... Ας θεωρήσουμε τώρα μια φήμη που διασπείρεται μέσα στην αίθουσα με τους φυσικούς. Όσοι βρίσκονται κοντά στην πόρτα, ακούνε πρώτοι τη φήμη και μαζεύονται για να συζητήσουν τις λεπτομέρειες. Μετά στρέφονται και πλησιάζουν τους επόμενους γείτονές τους που θέλουν να μάθουν και αυτοί τι έγινε. ...





... Ένα κύμα από συνάθροιση προσώπων διαδίδεται μέσα στην αίθουσα. Μπορεί να απλωθεί σε όλες τις γωνιές, ή μπορεί να σχηματιστεί μια δέσμη από συμπύκνωση προσώπων που θα διαδοθεί προς μία μόνο διεύθυνση μέσα στην αίθουσα, και θα μεταφέρει τη φήμη. Παράγονται δηλαδή πάλι συμπυκνώσεις, αλλά αυτή τη φορά μεταξύ των ιδίων των επιστημόνων, χωρίς να χρειάζεται και άλλο πρόσωπο.



Αφού η πληροφορία μεταφέρεται από συσσωματώματα ανθρώπων, και αφού τα συσσωματώματα ήταν εκείνα που έδωσαν περισσότερη μάζα στο πρόσωπο που μπήκε στην αίθουσα, τα συσσωματώματα αυτά από μόνα τους έχουν μάζα και χωρίς την ύπαρξη του σημαντικού προσώπου.



Το μποζόνιο Higgs προβλέπεται ότι είναι ακριβώς ένα τέτοιο συσσωμάτωμα μέσα στο πεδίο Higgs.

Στο σημείο αυτό θα βρούμε ξανά αναλογίες από τη φυσική του στερεού σώματος. Ένα κρυσταλλικό πλέγμα μπορεί να μεταφέρει κύματα πυκνότητας χωρίς να χρειάζεται κάποιο ηλεκτρόνιο να κινείται και να έλκει τα ιόντα. Τα κύματα αυτά μπορούν να συμπεριφέρονται σα να ήταν σωμάτια. Οι φυσικοί τα λένε φωνόνια, και είναι επίσης μποζόνια.



Θα πεισθούμε πραγματικά ότι το πεδίο υπάρχει, και ότι ο μηχανισμός που δίνει μάζα στα σωματίδια είναι πραγματικός, όταν βρούμε το ίδιο το σωματίδιο Higgs.



Θα μπορούσε να υπάρχει ένα πεδίο Higgs και ένας μηχανισμός Higgs σε όλο το Σύμπαν μας, χωρίς να υπάρχει ένα μποζόνιο Higgs; Η επόμενη γενιά των επιταχυντών και κυρίως ο πολυαναμενόμενος επιταχυντής LCH στη Γενεύη θα ξεκαθαρίσει το ζήτημα.



"Πιστεύω ότι θα το βρούμε στον επιταχυντή LCH. Αν δεν το βρούμε, θα προβληματιστώ πάρα πολύ. Δεν μπορώ να σκεφτώ άλλη εξήγηση για τη μάζα που διαθέτουν τα υποατομικά σωματίδια", δήλωσε ο ίδιος ο Higgs σε συνέντευξη Τύπου στη Γενεύη.



Όταν διατύπωσε τη θεωρία του στο Πανεπιστήμιο του Εδιμβούργου, το 1964, πολλοί συνάδελφοί του τον αποκάλεσαν «ανόητο». Σαράντα χρόνια μετά, κανείς δεν έχει να προτείνει τίποτα καλύτερο και όλοι περιμένουν με αγωνία την έμπρακτη δικαίωσή του.



"Είμαι 90% βέβαιος πως ο επιταχυντής του CERN θα εντοπίσει τελικά το μποζόνιο, ακόμη κι αν χρειαστούν μήνες αναλύσεων", είπε ο Higgs και πρόσθεσε: ¨"Αν δεν το βρούμε έως το Μάιο του 2009, που κλείνω τα 80, θα πω στον γιατρό μου να με κρατήσει ζωντανό λίγο παραπάνω".



Ο Higgs δεν απέκλεισε το ενδεχόμενο οι Αμερικανοί ερευνητές να έχουν ήδη παραγάγει το «σωματίδιο του Θεού», στον επίσης πανίσχυρο επιταχυντή Τέβατρον, στο εργαστήριο Fermilab του Σικάγου.



"Είναι πιθανό οι ΗΠΑ να έχουν κερδίσει την κούρσα και να μην το ξέρουν. Αν αποδείξουν ότι το βρήκαν προτού ξεκινήσει τη λειτουργία του ο δικός μας επιταχυντής, τότε η πρωτιά θα τους ανήκει.



Στην πράξη Ευρώπη και Αμερική δίνουν αγώνα ταχύτητας ποιος θα εντοπίσει πρώτος το σωματίδιο του Θεού», σημείωσε ο Βρετανός φυσικός

Χωρόχρονος.

Το χωροχρονικό συνεχές περιλαμβάνει τέσσερις διαστάσεις: τρεις διαστάσεις για το χώρο και μια για το χρόνο. Ένα σημείο στον χωρόχρονο ονομάζεται γεγονός. Το κάθε γεγονός καθορίζεται από τέσσερις συντεταγμένες, (ct, x, y, z), η φυσική σημασία των οποίων εξαρτάται από το ποιο σύστημα συντεταγμένων χρησιμοποιούμε για να περιγράψουμε τον χωρόχρονο. Παραδείγματα τέτοιων γεγονότων είναι η έκρηξη ενός αστέρα ή το χτύπημα ενός τύμπανου.




Ιστορία

Τόσο στην Ειδική Θεωρία Σχετικότητας όσο και στην Γενική Θεωρία Σχετικότητας, ο χρόνος και ο τρισδιάστατος χώρος θεωρούνται ως μία τετραδιάστατη πολλαπλότητα (manifold), που λέγεται χωρόχρονος. Η έννοια του χωροχρόνου πρωτοεμφανίστηκε το 1908 σε μια μαθηματική πραγματεία του Μινκόφσκι για τη γεωμετρία του χώρου και του χρόνου όπως αυτή είχε οριστεί στην ειδική θεωρία της σχετικότητας του Άλμπερτ Αϊνστάιν. Ο Αϊνστάιν είχε δημοσιεύσει το 1905 ένα άρθρο που σχετιζόταν με τους θεμελιώδεις νόμους του ηλεκτρομαγνητισμού και ονομαζόταν Περί της ηλεκτροδυναμικής των εν κινήσει σωμάτων. Αυτή η θεωρία προκάλεσε στις αρχές του 20ού αιώνα μια από τις μεγαλύτερες ανατροπές δεδομένων στον κόσμο της φυσικής.





Ιδιότητες του χωροχρόνου

Ο χωρόχρονος είναι ανεξάρτητος του παρατηρητή. Παρ’ όλα αυτά, για την περιγραφή των φυσικών φαινομένων ο κάθε παρατηρητής επιλέγει ένα κατάλληλο σύστημα συντεταγμένων. Τα γεγονότα καθορίζονται από τέσσερις πραγματικούς αριθμούς σε κάθε σύστημα συντεταγμένων.

Είναι πολύ δύσκολο να φανταστεί κανείς ότι ο χρόνος δεν είναι ο ίδιος ανάλογα με το σύστημα αναφοράς στο οποίο γίνεται η μέτρηση του. Αυτό ωστόσο έχει σε μεγάλο βαθμό αποδειχθεί πειραματικά, ειδικότερα στους επιταχυντές σωματιδίων του CERN.

Ο χρόνος εξαρτάται από το σύστημα αναφοράς στο οποίο γίνεται η μέτρηση του κι επομένως δεν είναι απόλυτος. Το ίδιο ισχύει για τον χώρο. Το μήκος ενός αντικειμένου μπορεί να είναι διαφορετικό ανάλογα με το σύστημα αναφοράς της μέτρησης.

Μόνο ο χωροχρόνος ως ενοποιημένη έννοια, που είναι μαθηματικά χώρος του Μινκόφσκι, είναι απόλυτος, ενώ οι συνιστώσες του, ο χώρος και ο χρόνος, αποτελούν πλευρές του που εξαρτώνται από τον παρατηρητή (το σύστημα αναφοράς).

Η σχέση μεταξύ της μέτρησης χώρου και χρόνου που δίνεται από την παγκόσμια σταθερά c (την ταχύτητα του φωτός στο κενό), επιτρέπει την περιγραφή μιας απόστασης d με μέτρο το χρόνο: d = ct, t όντας ο χρόνος που χρειάζεται το φως για να διασχίσει την απόσταση d. Ο Ήλιος απέχει 150 εκατομμύρια χιλιόμετρα, δηλαδή 8 λεπτά φωτός από τη Γη. Με τον όρο λεπτά φωτός, γίνεται λόγος για μια μέτρηση του χρόνου που πολλαπλασιάζεται με το c, κι έτσι εξάγεται μια μέτρηση απόστασης, στην περίπτωση αυτή, σε χιλιόμετρα. Μ' άλλα λόγια, χάρη στο c μονάδες χρόνου μετατρέπονται σε μονάδες απόστασης. Χιλιόμετρα και λεπτά φωτός είναι επομένως δυο μονάδες μέτρησης της απόστασης.

Αυτό που ενοποιεί χώρο και χρόνο στην ίδια εξίσωση είναι ότι η μέτρηση του χρόνου μπορεί να μετασχηματιστεί σε μέτρηση απόστασης (πολλαπλασιάζοντας το t, που εκφράζεται σε μονάδες χρόνου, με το c), και το t μπορεί έτσι να ταυτιστεί με τις τρεις άλλες συντεταγμένες απόστασης σε μια εξίσωση όπου όλες οι μετρήσεις γίνονται με μονάδες απόστασης. Από αυτήν την άποψη θα μπορούσε κανείς να πει ότι ο χρόνος είναι χώρος!





Καμπύλωση του χωροχρόνου

Σύμφωνα με τη γενική θεωρία της σχετικότητας η βαρύτητα (που προκαλείται από τη βαρυτική μάζα) ισοδυναμεί με επιτάχυσνη. Με άλλα λόγια το σώμα που σύμφωνα με την κλασσική μηχανική δέχεται βαρυτική δύναμη από ένα άλλο σώμα σύμφωνα με τη θεωρία της σχετικότητας δε δέχεται καμία δύναμη, αλλά επιταχύνεται ως προς το άλλο σώμα. Αυτο το φαινόμενο προκειμένουν να εξηγηθεί χρειάζεται να δεχθούμε την καμπύλωση του χωροχρόνου, δηλαδή το σύμπαν κοντά σε σώματα, που σύμφωνα με την κλασσική μηχανική δημιουργούν βαρυτικό πεδίο, δεν ισχύει η ευκλείδια γεωμετρία, αλλά μη ευκλείδιες γεωμετρίες. Αυτό σημαίνει ότι η βαρύτητα μπορεί να επηρεάσει το φως.





Επιταχυντής σωματιδίων

Γενικά επιταχυντής σωματίδιων ονομάζεται μια ειδική μηχανική διάταξη που μπορεί και επιταχύνει σωματιδία σε μεγάλες ταχύτητες, που μπορεί να φτάσουν ένα σημαντικό ποσοστό της ταχύτητας του φωτός.

Στη πραγματικότητα ο επιταχυντής σωματιδίων επιταχύνει δέσμες φορτισμένων σωματιδίων (π.χ. πρωτονίων και ηλεκτρονίων) κατά μήκος μιας τροχιάς, χρησιμοποιώντας ηλεκτρικά και μαγνητικά πεδία. Όταν πλέον οι δέσμες των σωματιδίων αυτών αναπτύξουν πολύ μεγάλη ταχύτητα οδηγούνται σε σύγκρουση με άλλα σωματίδια καλούμενα σωματίδια στόχοι. Άλλες φορές, δέσμες σωματιδίων που κινούνται σε αντίθετες κατευθύνσεις συγκρούονται στο εσωτερικό του επιταχυντή με συνέπεια να δημιουργούν νέα σωματίδια. Ειδικές ανιχνευτικές διατάξεις καθώς και υπολογιστές μπορούν και καταγράφουν τις τροχιές των σωματιδίων αυτών καθώς και τις εκτροπές και τροχιές των νέων σωματιδίων που προκύπτουν μετά τις συγκρούσεις των πρώτων.

Τα σωματίδια περιέχονται σε έναν σωλήνα κενού έτσι ώστε να μην χάνουν ενέργεια χτυπώντας σε μόρια αέρα. Σε επιταχυντές υψηλής ενέργειας, τετραπολικοί μαγνήτες χρησιμοποιούνται για να εστιάσουν τα σωματίδια σε μία δέσμη και να αποτρέψουν την μεταξύ τους ηλεκτροστατική ή απωστική δύναμη που θα μπορούσε να τα εκτρέψει.

Υπάρχουν δύο βασικοί τύποι επιταχυντών, οι γραμμικοί και οι κυκλικοί.





Γραμμικοί Επιταχυντές

Στον γραμμικό επιταχυντή τα σωματίδια επιταχύνονται πάνω σε μια ευθύγραμμη τροχιά, προσπίπτοντας στο στόχο τους. Σημαντική εφαρμογή βρίσκουν σε θεραπείες του καρκίνου.

Ο ιατρικός γραμμικός επιταχυντής είναι ένα ραδιοθεραπευτικό μηχάνημα, το οποίο επιταχύνει φωτόνια ακτίνων Χ και ηλεκτρόνια. Οι υψηλής ενέργειας ακτινοβολίες διεισδύουν βαθειά μέσα στο σώμα και διαλύουν τους καρκινικούς ιστούς, ενώ τα ηλεκτρόνια διεισδύουν μόνο σε βαθύτερες κυτταρικές δομές. Διαφορετικές ακτινοβολίες επιτρέπουν μία ποικιλία τέτοιων συνδυασμών.





Κυκλικοί Επιταχυντές

Αυτοί αναγκάζουν τα σωμάτια να γυρίζουν γύρω-γύρω σε μια κυκλική τροχιά δίνοντάς τους όλο και περισσότερη ενέργεια σε κάθε περιστροφή. Υπάρχουν πολλά είδη κυκλικών επιταχυντών όπως το σύγχροτρο, το κύκλοτρο και το συγχροκύκλοτρο, τα οποία αποτελούν πολύτιμα εργαλεία στην έρευνα της φυσικής υψηλών ενεργειών.





CERN

To CERN (πλήρης τίτλος: Organisation Européenne pour la Recherche Nucléaire «Ευρωπαϊκός Οργανισμός Πυρηνικών Ερευνών»), διατηρώντας τη σύντμηση (ακρωνύμιο) της αρχικής ονομασίας του Conseil Européenne pour la Recherche Nucléaire, είναι το μεγαλύτερο σε έκταση (πειραματικό) κέντρο πυρηνικών ερευνών και ειδικότερα επί της σωματιδιακής φυσικής στον κόσμο. Βρίσκεται δυτικά της Γενεύης, στα σύνορα Ελβετίας και Γαλλίας. Ιδρύθηκε το 1954 από δώδεκα ευρωπαϊκές χώρες και σήμερα αριθμεί 20 κράτη-μέλη*, μεταξύ των οποίων και η Ελλάδα, η οποία είναι και ιδρυτικό μέλος[1].

Λειτουργία - έρευνα

Η κύρια λειτουργία του αφορά την παροχή επιταχυντών σωματιδίων και άλλων υλικοτεχνικών υποδομών που χρειάζονται για την πειραματική έρευνα στο πεδίο της φυσικής υψηλών ενεργειών. Στο CERN λειτουργούν επομένως πολλοί επιταχυντές, ένας εκ των οποίων είναι ο πελώριος Super Proton Synchroton (SPS), ή LHC (Μέγας Επιταχυντής Ανδρονίων), ο οποίος αναπτύσσεται σε υπόγεια κυκλική σήραγγα 27 χιλιομέτρων που επιτρέπει στα πρωτόνια να επιταχύνονται στα 400 GeV, δηλαδή σε πολύ υψηλές ενέργειες.

Όπως αποδείχθηκε στην πράξη, όμως, οι ερευνητές του CERN δεν περιορίζονται αυστηρά στον τομέα της Ατομικής και Πυρηνικής Φυσικής: Στο CERN εργαζόταν, ως έκτακτος ερευνητής, ο Τιμ Μπέρνερς Λι (Tim Berners-Lee), ο επινοητής του Παγκόσμιου Ιστού, της δημοφιλέστερης, σήμερα, υπηρεσίας του Διαδικτύου[2].





Προσωπικό

Το CERN απασχολεί σήμερα περίπου 3.000 μόνιμους εργαζόμενους, ενώ περίπου 6.500 επιστήμονες και μηχανικοί (που αντιπροσωπεύουν 500 πανεπιστήμια και 80 διαφορετικές εθνικότητες), περίπου το μισό της κοινότητας της σωματιδιακής φυσικής στον κόσμο, δουλεύουν σε πειράματα που οργανώνονται από το CERN[3] .

Άλμπερτ Αϊνστάιν.

Ο Άλμπερτ Αϊνστάιν (Albert Einstein, τονισμός στα Γερμανικά: Άλμπερτ Άινσταϊν), που από πολλούς θεωρείται ως ο μεγαλύτερος φυσικός του 20ού αιώνα, γεννήθηκε στο Ουλμ (Ulm) της Γερμανίας στις 14 Μαρτίου του 1879 και πέθανε στις 18 Απριλίου του 1955 στο Πρίνστον (Princeton) του Νιού Τζέρσεϊ (New Jersey) των ΗΠΑ σε ηλικία 75 ετών. Είναι ο θεμελιωτής της Θεωρίας της Σχετικότητας.


To 1905 δημοσίευσε τέσσερα άρθρα στο επιστημονικό περιοδικό Χρονικά της Φυσικής (Annalen der Physik) (τόμος 17). Στο πρώτο από αυτά έδωσε την εξήγηση του φωτοηλεκτρικού φαινομένου, για την οποία του απονεμήθηκε το βραβείο Νόμπελ το 1921.

Στηρίχθηκε στην υπόθεση της κβάντωσης η οποία είχε εισαχθεί μερικά χρόνια νωρίτερα από τον Πλανκ (Planck) για ερμηνεία της ακτινοβολίας του μέλανος σώματος. Οι δύο αυτές εργασίες των Πλανκ και Αϊνστάιν αποτέλεσαν την αρχή της κβαντικής μηχανικής. Αργότερα ο Αϊνστάιν εναντιώθηκε στην θεωρία των κβάντα, γιατί δεν μπορούσε να πιστέψει ότι ο Θεός παίζει ζάρια με τον Κόσμο.

Στο τρίτο από τα άρθρα που δημοσίευσε το 1905 ο Αϊνστάιν διατύπωσε την ειδική θεωρία της σχετικότητας και στο τέταρτο έδειξε ότι από αυτήν συνάγεται ο διάσημος τύπος E = mc2 (γενική θεωρία της σχετικότητας) που δηλώνει τη δυνατότητα και την ισοδυναμία αλληλομετατροπής ενέργειας και μάζας, ορίζοντας έτσι, ως ενιαίο χώρο την υλοενέργεια. Αυτό σημαίνει πώς η ενέργεια που μπορεί να παράξει οτιδήποτε εξαρτάται από τη μάζα του. Τον Νοέμβριο του 1915, ο Αϊνστάιν παρουσίασε τη γενική θεωρία της σχετικότητας σε μία σειρά διαλέξεων ενώπιον της Πρωσσικής Ακαδημίας Επιστημών. Το 1919 κατά τη διάρκεια μίας ηλιακής έκλειψης ο Σερ Άρθουρ Έντινγκτον (Eddington) παρακολούθησε το φως αστέρων καθώς αυτοί περνούσαν κοντά από τον ήλιο. Οι μετρήσεις του συμφωνούσαν με τη θεωρία της σχετικότητας και το γεγονός αυτό έκανε τον Αϊνστάιν διάσημο.

Είχε υποσχεθεί στην σύζυγό Μιλέβα Μάριτζ του ότι αν του έδινε το διαζύγιο,θα της έδινε τα χρήματα που θα εξασφάλιζε από το βραβείο Νόμπελ για την ίδια αλλά και την ανατροφή των παιδιών τους.

Eκτός από την αγάπη του για την φυσική, αγαπούσε επίσης και τη μουσική καθώς έπαιζε βιολί.

Το 1952 του προτάθηκε η προεδρία του νεοσύστατου κράτους του Ισραήλ, την οποία αρνήθηκε για διάφορους λόγους.





Ειδική σχετικότητα

E = mc2

Η ειδική σχετικότητα είναι μια θεωρία της δομής του χωροχρόνου, την οποία εισήγαγε ο Άλμπερτ Άινσταϊν το 1905. Βασίζεται σε δύο αξιώματα τα οποία είναι αντίθετα με την κλασική μηχανική:

1. Οι νόμοι της φυσικής είναι οι ίδιοι για όλους τους παρατηρητές που βρίσκονται σε αδρανειακό σύστημα αναφοράς (αρχή σχετικότητας του Γαλιλαίου).

2. Η ταχύτητα του φωτός στο κενό είναι ίδια για όλους τους παρατηρητές, ανεξαρτήτως της σχετικής τους κίνησης ή της κίνησης της πηγής του φωτός.

Η θεωρία έχει ορισμένες συνέπειες. Κάποιες από αυτές είναι οι εξής:

• Διαστολή χρόνου: Τα κινούμενα ρολόγια γυρνάνε διαφορετικά από ένα στάσιμο ρολόι ενός παρατηρητή (σύμφωνα με την οποία προκύπτει το παράδοξο των διδύμων).

• Συστολή του μήκους: Τα αντικείμενα παρατηρούνται να μικραίνουν στην κατεύθυνση που κινούνται σε σχέση με τον παρατηρητή.

• Σχετικότητα της ταυτοχρονικότητας: Δύο γεγονότα που φαίνονται να συμβαίνουν ταυτόχρονα σε έναν παρατηρητή Α, δε θα συμβαίνουν ταυτόχρονα για έναν παρατηρητή Β, εάν ο Β κινείται σε σχέση με τον Α.

• Ισοδυναμία μάζας-ενέργειας: Από τη σχέση E = mc², η ενέργεια και η μάζα είναι ισοδύναμες.

Αυτές οι συνέπειες περιγράφονται από τους μετασχηματισμούς του Λόρεντζ.

Με βάση τη θεωρία της σχετικότητας εισάγεται και η έννοια της μάζας ηρεμίας. Σύμφωνα με την γενική θεωρία της σχετικότητας η αδράνεια ενός κινούμενου σώματος αυξάνεται καθώς αυξάνεται η ταχύτητά του. Μάζα ηρεμίας λοιπόν είναι η μάζα του σώματος όταν αυτό είναι ακίνητο.





Γενική σχετικότητα

Κύριο άρθρο: Γενική σχετικότητα

Η γενική σχετικότητα είναι μια θεωρία βαρύτητας που αναπτύχθηκε από τον Άινσταϊν την περίοδο 1907 - 1915.

Η ανάπτυξη της γενικής σχετικότητας ξεκίνησε με την αρχή της ισοδυναμίας, σύμφωνα με την οποία οι καταστάσεις επιταχυνόμενης κίνησης και ηρεμίας σε ένα βαρυτικό πεδίο (για παράδειγμα πάνω στην επιφάνεια της Γης) είναι ταυτόσημες. Το αποτέλεσμα της ιδέας αυτής είναι ότι η ελεύθερη πτώση είναι αδρανειακή κίνηση σε μη ευκλείδιο χώρο: Με άλλα λόγια, ένα αντικείμενο σε ελεύθερη πτώση, πέφτει επειδή αυτός είναι ο τρόπος με τον οποίο τα αντικείμενα κινούνται όταν δεν ασκείται πάνω τους δύναμη, αντί να πέφτει λόγω της δύναμης της βαρύτητας, όπως συμβαίνει στην κλασική μηχανική. Αυτό είναι ασύμβατο με την κλασική μηχανική και την ειδική σχετικότητα, επειδή σε αυτές τις θεωρίες αντικείμενα που κινούνται αδρανειακά δε μπορούν να επιταχύνουν το ένα σε σχέση με το άλλο, αλλά αντικείμενα σε ελεύθερη πτώση κάνουν ακριβώς αυτό. Για να λυθεί η δυσκολία, ο Άινσταϊν πρότεινε αρχικά πως ο χωροχρόνος είναι καμπυλωμένος. Το 1915 ανακοίνωσε τις πεδιακές εξισώσεις Άινσταϊν, οι οποίες συσχετίζουν την καμπύλωση του χωροχρόνου σε σχέση με τη μάζα, την ενέργεια και την ορμή μέσα σε αυτόν.

Σύμφωνα με τη γενική θεωρία της σχετικότητας:

• Ο χρόνος περνά διαφορετικά σε χαμηλότερα βαρυτικά δυναμικά. Το φαινόμενο αυτό ονομάζεται βαρυτική διαστολή του χρόνου.

• Οι τροχιές μεταβάλλονται με τρόπο μη αναμενόμενο από τη θεωρία του Νεύτωνα για τη βαρύτητα.

• Ακόμα και οι ακτίνες του φωτός (όπου τα φωτόνια δεν έχουν μάζα) αλλάζουν πορεία παρουσία ενός βαρυτικού πεδίου.

• Ερμηνεύει η διαστολή του Σύμπαντος, και τα μακρινά μέρη του απομακρύνονται από εμάς σχεδόν με την ταχύτητα του φωτός. Αυτό δεν αντιτίθεται στην ειδική σχετικότητα, καθώς είναι το ίδιο το Σύμπαν το οποίο διαστέλλεται.





Ειδική σχετικότητα

Η σχετικοποίηση του χρόνου υπήρξε ένα από τα σημαντικότερα συμπεράσματα της ειδικής σχετικότητας. Ο χρόνος όχι μόνο μπορει να κυλά με διαφορετικο ρυθμό για δυο παρατηρητές, αλλά και δυο γεγονότα που φαίνονται ταυτόχρονα σε έναν παρατηρητή μπορεί να μην είναι για έναν άλλον.

Η ειδική σχετικότητα είναι η θεωρία που διατυπώθηκε απο τον Άλμπερτ Αϊνστάιν το 1905, και η οποία συμπληρώνει τους νόμους κίνησης του Νεύτωνα, ώστε να ισχύουν και σε ταχύτητες κοντά στην ταχύτητα του φωτός. Η ειδική θεωρία της σχετικότητας προκύπτει απο την ικανοποίηση της γενικευμένης αρχής της σχετικότητας και της αρχής του Αϊνστάιν, σύμφωνα με την οποία η ταχύτητα του φωτός είναι ίδια για όλους τους αδρανειακούς παρατηρητές, ανεξάρτητα απο τη σχετική τους ταχύτητα. Σύμφωνα με την γενικευμένη αρχή της σχετικότητας, οι φυσικοί νόμοι που ισχύουν σε ένα αδρανειακό σύστημα αναφοράς (δηλαδή ένα μη επιταχυνόμενο σύστημα), έχουν την ίδια μορφή σε οποιοδήποτε άλλο αδρανειακό σύστημα αναφοράς.

Πριν τον Αϊνστάιν, μια πρώτη μορφή της αρχής της σχετικότητας είχε διατυπωθεί ήδη από τον Γαλιλαίο και στη συνέχεια ενσωματώθηκε στη Νευτώνεια σύνθεση. Η αρχή αυτή δήλωνε ότι όλοι οι νόμοι της μηχανικής πρέπει να έχουν την ίδια μορφή σε όλα τα αδρανειακά συστήματα αναφοράς. Η μετάβαση από το ένα αδρανειακό σύστημα στο άλλο γινόταν με ένα ορισμένο είδος μετασχηματισμών συντεταγμένων, που ονομάστηκαν αργότερα μετασχηματισμοί του Γαλιλαίου ή αλλιώς, νόμος πρόσθεσης ταχυτήτων. Ενώ οι νόμοι της μηχανικής συμμορφώνονταν με τον μετασχηματισμό αυτό (ήταν αναλλοίωτοι κατά την εφαρμογή του), οι νόμοι του Ηλεκτρομαγνητισμού, και ειδικά ο νόμος για την σταθερότητα και παγκοσμιότητα της ταχύτητας του φωτός, τον παραβίαζαν. Ο Αϊνστάιν αντικατέστησε τους μετασχηματισμούς του Γαλιλαίου με ένα νέο σύνολο μετασχηματισμών, τους μετασχηματισμούς του Λόρεντζ, και διατύπωσε την Γενικευμένη αρχή της Σχετικότητας, σύμφωνα με την οποία όλοι οι νόμοι της Φύσης (μηχανικής, ηλεκτρομαγνητισμού και όποιοι άλλοι) είναι αναλλοίωτοι κάτω από τους νέους αυτούς μετασχηματισμούς και (πρέπει να) παίρνουν την ίδια μορφή σε όλα τα αδρανειακά συστήματα.

Η ειδική θεωρία της σχετικότητας προβλέπει φαινόμενα που αντίκεινται στην καθημερινή μας εμπειρία, ωστόσο έχει επιβεβαιωθεί πειραματικά σε σειρά πειραμάτων, και επιβεβαιώνεται καθημερινά στους σύγχρονους επιταχυντές σωματιδίων.

Η ειδική σχετικότητα συμπληρώθηκε αργότερα από τη γενική σχετικότητα, διατυπωμένη επίσης από τον Αϊνστάιν, που μελετούσε τη βαρύτητα με τον σχετικιστικό φορμαλισμό. Με τη διατύπωση της γενικής σχετικότητας, η Νευτώνεια βαρύτητα έγινε πλέον υποπερίπτωση της σχετικιστικής βαρύτητας, και η κλασική Φυσική ολοκληρώθηκε ως εννοιολογικό πλαίσιο.





Αδρανειακό σύστημα αναφοράς

Ένα αδρανειακό σύστημα αναφοράς είναι ένα σύστημα στο οποίο ισχύουν ο πρώτος και δεύτερος νόμος του Νεύτωνα για την κίνηση των σωμάτων.

Ως εκ τούτου, σε ένα αδρανειακό σύστημα αναφοράς, ένα σώμα επιταχύνεται μόνο όταν μια δύναμη εφαρμόζεται πάνω του, και (σύμφωνα με τον πρώτο νόμο του Νεύτωνα για την κίνηση των σωμάτων), αν δεν εφαρμόζεται πάνω του καμία δύναμη, ένα σώμα που έχει μηδενική ταχύτητα θα συνεχίσει να ηρεμεί και ένα σώμα που κινείται θα συνεχίσει να κινείται με σταθερή ταχύτητα και ευθύγραμμα.





] Ισοδυναμία αδρανειακών συστημάτων αναφοράς

Μια θεμελιώδης αρχή της φυσικής είναι η ισοδυναμία των αδρανειακών συστημάτων αναφοράς. Στην ορολογία της Φυσικής, η ισοδυναμία αυτή σημαίνει ότι οι παρατηρητές που είναι μέσα σε ένα απομονωμένο σύστημα που κινείται ευθύγραμμα ομαλά δεν μπορούν να ανιχνεύσουν την κίνησή του με κανένα πείραμα που γίνεται αποκλειστικά μέσα στο απομονωμένο σύστημα.

Εν αντιθέσει, τα σώματα δέχονται τις λεγόμενες δυνάμεις αδράνειας σε ένα μη αδρανειακό σύστημα αναφοράς, δηλαδή δυνάμεις που είναι αποτέλεσμα της επιτάχυνσης του ίδιου του συστήματος αναφοράς και όχι πραγματικές δυνάμεις που δρουν πάνω στα σώματα. Παραδείγματα δυνάμεων αδράνειας είναι η κεντρομόλος δύναμη και η δύναμη Κοριόλις σε ένα στρεφόμενο σύστημα αναφοράς. Γι' αυτό, οι επιστήμονες που είναι μέσα σε ένα απομονωμένο σύστημα αναφοράς το οποίο στρέφεται, οπότε επιταχύνεται μπορούν να μετρήσουν την επιτάχυνση τους παρατηρώντας τις δυνάμεις αδράνειας στα σώματα εντός του συστήματος





Αδρανειακά συστήματα στην κλασσική μηχανική

Η Κλασσική μηχανική παραδέχεται την ισοδυναμία όλων των αδρανειακών συστημάτων αναφοράς και κάνει ακόμα μία παραδοχή, ότι ο χρόνος περνάει με τον ίδιο ρυθμό σε όλα τα συστήματα αναφοράς. Αυτό ανταποκρίνεται στην θεωρία του Νεύτωνα του απόλυτου χώρου και χρόνου. Με αυτές τις δύο παραδοχές οι συντεταγμένες του ίδιου γεγονότος (ένα σημείο στο χώρο και το χρόνο) περιγράφονται σε δύο αδρανειακά συστήματα αναφοράς με τη σχέση απ'τους μετασχηματισμούς Γαλιλαίου





όπου και t0 αναπαριστούν τη μετατόπιση από την αρχή του χώρου και του χρόνου, και είναι η σχετική ταχύτητα των δύο αδρανειακών συστημάτων αναφοράς. Με τους μετασχηματισμούς Γαλιλαίου το χρονικό διάστημα (t2 − t1) μεταξύ δύο γεγονότων είναι το ίδιο για όλα τα αδρανεικά συστήματα αναφοράς και η απόσταση μεταξύ δύο ταυτόχρονων γεγονότων (ή, ισοδύναμα, το μήκος οποιουδήποτε αντικειμένου, ) είναι επίσης το ίδιο.





Η θεωρία της ειδικής σχετικότητας του Αϊνστάιν

Η Ειδική θεωρία της σχετικότητας του Άλμπερτ Αϊνστάιν παρομοίως παραδέχεται την ισοδυναμία όλων των αδρανειακών συστημάτων αναφοράς, αλλά κάνει μια διαφορετική παραδοχή από την παραπάνω, δηλαδή ότι η ταχύτητα του φωτός είναι η ίδια όταν μετράται σε όλα τα αδρανεικά συστήματα αναφοράς. Αυτή η δεύτερη παραδοχή οδηγεί σε φαινόμενα που έρχονται σε αντίθεση με αυτά που αντιλαμβανόμαστε που όμως έχουν αποδειχθεί πειραματικά, όπως:

• Συστολή του χρόνου (κινούμενα ρολόγια χτυπάν πιο αργά)

• Συστολή του μήκους (κινούμενα αντικείμενα έχουν πιο μικρό μήκος στην κατεύθυνση της κίνησης)

• Σχετικότητα του ταυτόχρονου (Ταυτόχρονα γεγονότα σε ένα αδρανειακό σύστημα αναφοράς δεν είναι ταυτόχρονα σε ένα αδρανειακό σύστημα αναφοράς που κινείται σε σχέση με το πρώτο).

Τα φαινόμενα αυτά εκφράζονται μαθηματικά με τους μετασχηματισμούς Lorentz:









όπου η μετατόπιση απ' την αρχή του χώρου και του χρόνου αγνοείται, η σχετική ταχύτητα θεωρείται στη κατεύθυνση του άξονα x και ο παράγοντας γ είναι ορισμένος ως



Οι μετασχηματισμοί Lorentz είναι ισοδύναμε με τους μετασχηματισμούς Γαλιλαίου στο όριο ή, ισοδύναμα, (χαμηλές ταχύτητες).

Με τους μετασχηματισμούς Lorentz, ο χρόνος και η απόσταση μεταξύ δύο γεγονότων μπορεί να ποικίλει στα διάφορα αδρανειακά συστήματα αναφοράς. Παρόλα αυτά, οι η μονόμετρη απόσταση s2 μεταξύ δύο γεγονότων είναι ίδια για όλα τα αδρανειακά συστήματα αναφοράς



όπου c είναι η ταχύτητα του φωτός. Από αυτήν την σκοπιά, η ταχύτητα του φωτός είναι μόνο κατά σύμπτωση μια ιδιότητα του φωτός, παρά μια ιδιότητα του χωροχρόνου, ένας παράγοντας μετατροπής μεταξύ συμβατικών μονάδων χρόνου (όπως τα δευτερόλεπτα και μονάδων μήκους (όπως το μέτρο).





Η γενική θεωρία της σχετικότητας του Αϊνστάιν

Η Γενική θεωρία της σχετικότητας τροποποιεί τη διάκριση μεταξύ των κατ' όνομα "αδρανειακών" και "μη αδρανειακών" αντικαθιστώντας την "επίπεδη" Ευκλείδια Γεωμετρία της ειδικής σχετικότητας με μια καμπύλη, μη Ευκλείδια μετρική. Στη γενική σχετικότητα, η αρχή της αδράνειας αντικαθίσταται με την αρχή της γεωδαιτικής κίνησης, όπου τα αντικείμενα κινούνται με τον τρόπο που επιτάσσει η καμπύλωση του χωροχρόνου. Ως αποτέλεσμα αυτής της καμπύλωσης, δεν είναι δεδομένο στη γενική σχετικότητα ότι τα αδρανειακά αντικείμενα που κινούνται με έναν συγκεκριμένο ρυθμό το ένα ως προς το άλλο θα συνεχίσουν να κινούνται έτσι. Αυτό το φαινόμενο της γεωδαιτικής απόκλισης σημαίνει ότι τα αδρανειακά συστήματα αναφοράς δεν υπάρχουν γενικά, όπως γίνεται στη Νεωτώνεια μηχανική ή στην ειδική σχετικότητα. Αυτό μπορεί γίνει αντιληπτό αν αναλύσουμε την βαρύτητα και στις δύο θεωρίες. Ντετερμινιστικά η βαρύτητα εξηγείται με την έλξη των δύο σωμάτων η οποία είναι ανάλογη των μαζών τους. Σχετικιστικά η βαρύτητα εξηγείται με την καμπύλωση του χωροχρόνου π.χ. εάν τεντώσουμε ένα σεντόνι και ρίξουμε μια μπάλα του μπόουλινγκ και μπάλες του μπιλιάρδου οι δεύτερες θα κολλήσουν στην πρώτη χωρίς να υπάρχει προφανής έλξη αλλά εξαιτίας της καμπύλωσης του σεντονιού (χώρου). Οι μεγαλύτερες μάζες δηλαδή απλά καμπυλώνουν το χωροχρόνο περισσότερο και έτσι προκύπτει η έλξη.

Παρόλα αυτά, η γενική σχετικότητα περιορίζεται στην ειδική σχετικότητα σε ικανοποιητικά μικρές περιοχές του χωροχρόνου, όπου τα φαινόμενα καμπύλωσης είναι μειωμένης σημασίας και τα αρχικά αξιώματα των αδρανειακών συστημάτων μπορούν να εφαρμοστούν. Ως επακόλουθο, η σύγχρονη ειδική σχετικότητα περιγράφεται πλέον ως μια “θεωρία περιορισμένης εμβέλειας”, με αυτό να αναφέρεται βέβαια στις εφαρμογές της παρά στην προέλευσή της.





Οι καθημερινές μας εμπειρίες για την ταχύτητα κίνησης διαφόρων σωμάτων περιορίζονται σε ταχύτητες πολύ μικρότερες απ’ εκείνη του φωτός. Η Νευτώνεια μηχανική και οι πρώτες ιδέες για το χωροχρόνο αποσκοπούσαν στην ερμηνεία της κίνησης των σωμάτων αυτών. Ο στόχος αυτός ήρθε σε πέρας με μεγάλη επιτυχία ερμηνεύοντας πράγματι ένα πολύ μεγάλο φάσμα φαινομένων. Η Νευτώνεια μηχανική εξηγεί με μεγάλη επιτυχία φαινόμενα χαμηλών ταχυτήτων, αλλά αποτυγχάνει και δεν μπορεί να εξηγήσει φαινόμενα που γίνονται σε ταχύτητες πλησίον εκείνης του φωτός. Πειραματικά έχει αποδειχτεί ότι η ισχύς της Νευτώνειας μηχανικής είναι περιορισμένη.

Σύμφωνα με τη θεωρία της σχετικότητας του Einstein μπορούμε να προβλέψουμε τις πειραματικές παρατηρήσεις για ταχύτητες από u = 0 έως εκείνες που πλησιάζουν την ταχύτητα του φωτός. Η Νευτώνεια Μηχανική, που θεωρούταν επί δύο αιώνες ότι είναι η γενική θεωρία, αποτελεί ειδική περίπτωση της γενικότερης θεωρίας του Einstein, της θεωρίας δηλαδή της ειδικής σχετικότητας.

Στο θέμα μας εδώ θα δώσουμε έμφαση μόνο στις επιπτώσεις της ειδικής θεωρίας της σχετικότητας του Einstein όσο αφορά το χρόνο (παράδοξο διδύμων).





Η αρχή της σχετικότητας

Για να περιγράψουμε ένα φυσικό γεγονός πρέπει να ορίσουμε ένα σύστημα αναφοράς . Είναι γνωστό ότι απόλυτη ακινησία ή κίνηση δεν εννοείται. Ένα σώμα λέμε ότι κινείται, όταν αλλάζει θέση σε σχέση με ένα σύστημα συντεταγμένων το οποίο εμείς θεωρούμε ακίνητο (σύστημα αναφοράς). Εάν πάρουμε ένα σώμα που δεν επιδρά με κανένα άλλο σώμα, τότε υπάρχει κάποιο σύστημα αναφοράς, ως προς το οποίο το σώμα αυτό είτε είναι ακίνητο είτε κινείται ευθύγραμμα ομαλά. Το σύστημα αυτό το ονομάζουμε αδρανειακό σύστημα αναφοράς. Ενα τέτοιο αδρανειακό σύστημα είναι για παράδειγμα το σύστημα των μακρινών αστέρων, αφού η αλληλεπίδραση ενός σώματος με αυτά θεωρείται αμελητέα.

Προτού μελετήσουμε ένα απ’ τ’ αποτελέσματα της ειδικής θεωρίας της σχετικότητας, εκείνο της σχετικότητας του χρόνου, πρέπει να καταλάβουμε πως περιγράφεται ένα γεγονός, από έναν παρατηρητή που βρίσκεται σ’ ένα αδρανειακό σύστημα αναφοράς. Γνωρίζουμε απ’ την ίδια θεωρία ότι για να περιγράψουμε ένα γεγονός χρειαζόμαστε 4 συντεταγμένες, 3 για το χώρο (μήκος, πλάτος, ύψος) και μια για το χρόνο (χωροχρόνος). Παρατηρητές που βρίσκονται σε διαφορετικά αδρανειακά συστήματα αναφοράς θα περιγράψουν το γεγονός με διαφορετικές συντεταγμένες χωροχρόνου. Υποθέστε δύο παρατηρητές Α, και Β σε δύο διαφορετικές κορυφές με συγχρονισμένα τα ρολόγια τους. Ο παρατηρητής Α κάποια χρονική στιγμή ( t = x) στέλνει ένα σήμα φωτός και καταγράφεται από το ρολόι του. Επειδή το φώς δε φτάνει “ακαριαία” στον παρατηρητή Β αυτός το καταγράφει με μία καθυστέρηση ίση με r / c, όπου r είναι η απόσταση των δύο κορυφών και c η ταχύτητα του φωτός. Ο χρόνος αυτός είναι πάρα μα πάρα πολύ μικρός αλλά πάντοτε πεπερασμένος, συνεπώς και μετρήσιμος. Επομένως για να είναι συγχρονισμένο το δεύτερο ρολόι πρέπει να δείχνει χρόνο ίσο με r/c τη στιγμή που θα φτάσει το σήμα σ’ αυτόν. Καθώς προχωράμε στο θέμα μας θα παρατηρήσουμε ότι τ’ αποτελέσματα αυτά της θεωρίας του Einstein στη σχετική κίνηση βρίσκονται σε άμεση αντίθεση με τις απόψεις που έχουμε για το χώρο αλλά και το χρόνο. Θα δούμε ότι : “Η απόσταση ανάμεσα σε δυο σημεία καθώς και το χρονικό διάστημα ανάμεσα σε δυο γεγονότα εξαρτάται απ’ το σύστημα αναφοράς στο οποίο γίνεται η μέτρηση, δεν υπάρχουν δηλαδή έννοιες του απόλυτου μήκους ή απόλυτου χρόνου”.





Η σχετικότητα του χρόνου

Είδαμε ότι παρατηρητές που βρίσκονται σε διαφορετικά αδρανειακά συστήματα θα βρίσκουν πάντοτε κατά τις μετρήσεις διαφορετικές τιμές για το χρονικό διάστημα που διέρρευσε μεταξύ δύο συμβάντων. Αυτό μπορούμε να το καταλάβουμε καλύτερα εάν θεωρήσουμε ένα βαγόνι που κινείται προς τα δεξιά με ταχύτητα u (σχήμα 1.). Το εσωτερικό της οροφής του βαγονιού έχει έναν καθρέπτη και ο παρατηρητής Α’ ακίνητος ως προς το βαγόνι κρατά ένα λέιζερ σε απόσταση d απ’ τον καθρέπτη. Σε μια στιγμή το λέιζερ εκπέμπει προς την κατεύθυνση του καθρέπτη ένα παλμό φωτός (γεγονός 1). Μετά από λίγο αφού ανακλαστεί στον καθρέπτη επιστρέφει πίσω στο λέιζερ (γεγονός 2). Ο παρατηρητής Α’ έχει ένα ρολόι και μετράει το χρονικό διάστημα Δt’ που διέρρευσε ανάμεσα στα δύο γεγονότα. Γνωρίζουμε ότι η ταχύτητα του παλμού του φωτός είναι c. Επομένως για να βρούμε το χρόνο ώσπου το φως να μεταβεί απ’ το λέιζερ στον καθρέπτη και να επιστρέψει στο λέιζερ, θα χρησιμοποιήσουμε τον τύπο της ταχύτητας,

(1)

όπου :

u = ταχύτητα

s = διανυθείσα απόσταση

t = χρόνος

αντικαθιστώντας και λύνοντας ως προς t βρίσκουμε :

(2)

Βασικό να σημειώσουμε ότι ο παρατηρητής Α’ χρησιμοποίησε ένα μόνο ρολόι που είναι ακίνητο (βρίσκεται στο ίδιο σημείο του συστήματος αναφοράς του κινούμενου οχήματος).

Θεωρούμε τώρα τα ίδια γεγονότα αλλά από τη σκοπιά του παρατηρητή Β’ που βρίσκεται στο έδαφος ακίνητος. Σύμφωνα με τον παρατηρητή Β’ ο καθρέπτης και το λέιζερ κινούνται προς τα δεξιά με ταχύτητα u μαζί με το τραίνο. Μέχρι τη στιγμή που ο παλμός θα φτάσει στον καθρέπτη, ό καθρέπτης θα έχει κινηθεί προς τα δεξιά κατά μια απόσταση ίση με από (1) και (2)

(3)

Δt = Το χρονικό διάστημα που κατά τον παρατηρητή Β απαιτείται ώσπου ο παλμός του φωτός να φτάσει απ’ το λέιζερ στον καθρέπτη και να επιστρέψει στο λέιζερ.

Συγκρίνοντας τα δύο σχήματα θα διαπιστώσουμε ότι κατά τον παρατηρητή Β’ η διαδρομή του παλμού είναι μεγαλύτερη απ’ εκείνη που νομίζει ο παρατηρητής Α’ !

Σύμφωνα με το 2ο αξίωμα της σχετικότητας και οι δύο παρατηρητές πρέπει να μετρούν την ίδια ταχύτητα φωτός c. Επειδή κατά τον παρατηρητή Β’ η διαδρομή του φωτός είναι μεγαλύτερη, τότε και το χρονικό διάστημα Δt που μετράει στο ακίνητο σύστημα πρέπει να είναι μεγαλύτερο από το χρονικό διάστημα Δt’ που μετράει ο παρατηρητής Α’ στο κινούμενο σύστημα.

Για να βρούμε τη σχέση ανάμεσα στα δύο χρονικά διαστήματα θεωρούμε το ορθογώνιο τρίγωνο (σχήμα 3.) Εφαρμόζοντας το Πυθαγόρειο θεώρημα βρίσκουμε :



(4)

Λύνοντας ως προς Δt βρίσκουμε :

(5)

Βάση της (2) η (5) γίνεται :

(6)

Τα δύο γεγονότα που παρατηρεί ο Β’ συμβαίνουν σε δύο διαφορετικά σημεία του χώρου και για να μετρήσει το Δt, πρέπει να χρησιμοποιήσει δύο συγχρονισμένα ρολόγια που βρίσκονται σε δύο διαφορετικά σημεία στο σύστημα αναφοράς του. Βλέπουμε από την εξίσωση (6) ότι το Δt του παρατηρητή Α στο ακίνητο σύστημα αναφοράς είναι μεγαλύτερο από το Δt’ του Β στο κινούμενο σύστημα. Δηλαδή :

Δt > Δt’

Το φαινόμενο αυτό λέγεται διαστολή χρόνου. Το Δt’ λέγεται ιδιόχρονος.

Η διαστολή του χρόνου είναι ένα φαινόμενο που έχει επιβεβαιωθεί πειραματικά .

Αφού εξηγήσαμε το φαινόμενο της διαστολής του χρόνου ερχόμαστε στην ανθρώπινη εφαρμογή του με το υποθετικό πείραμα του ταξιδιού των διδύμων.





Το παράδοξο των διδύμων

Ένα πολύ ενδιαφέρον αποτέλεσμα της διαστολής το χρόνου είναι το λεγόμενο παράδοξο των διδύμων.

Θεωρούμε δύο 20άχρονους δίδυμους το Σταμάτη και το Γρηγόρη. Ο Γρηγόρης μπαίνει σ’ ένα διαστημόπλοιο το έτος 2008 και ταξιδεύει σ’ ένα μακρινό αστέρι που απέχει απ’ τη Γη 30 έτη φωτός με ταχύτητα πολύ κοντά σ’ εκείνη του φωτός. Αφού φτάσει στον προορισμό του επιστρέφει αμέσως στη Γη με την ίδια ακριβώς ταχύτητα. Όταν φτάνει στη Γη εκπλήσσεται με τις αλλαγές που βλέπει γύρω του. Οι πόλεις γύρω του έχουν αλλάξει, ο τρόπος ζωής των ανθρώπων έχει αλλάξει κι αυτός καθώς νέες τεχνολογίες έχουν μπει στη ζωή του, αλλά και άλλα πολλά. Η μεγαλύτερη έκπληξη όμως τον περιμένει όταν πηγαίνει στο σπίτι του δίδυμου αδερφού του Σταμάτη. Αντί να δει ένα παλικάρι 31 ετών (που είναι η ηλικία του) βλέπει ένα παππούλη με δύο εγγόνια στην ηλικία που είχε όταν ξεκίνησε το ταξίδι του !!! Ο Σταμάτης βλέποντας το δίδυμο αδερφό του τον αναγνωρίζει φυσικά αμέσως και ανοίγει την αγκαλιά του να τον υποδεχτεί :

“Καλωσόρισες Γρηγόρη ! Πως ήταν το ταξίδι ;” λέει ο Σταμάτης. “Ένα ταξίδι στο διάστημα είναι μια εκπληκτική εμπειρία. Βλέπεις υπέροχους κόσμους που δε τους φαντάζεσαι καν… αλλά μια στιγμή ο Σταμάτης που είναι ;” “ΕΓΩ ΕΙΜΑΙ, τόσο πολύ άλλαξα ;!” απαντά ο Σταμάτης. “Τι ‘κακό’ σε βρήκε και φαίνεσαι σαν να ‘σαι 80άρης;” ρωτά ο Γρηγόρης. “Μα ΕΙΜΑΙ 80 ετών, βρισκόμαστε στο έτος 2068…”

Ο Γρηγόρης λιποθυμά και ο Σταμάτης τον αρχίζει “στα χαστούκια” για να τον συνεφέρει !

Ας το δούμε όμως απ’ τη σκοπιά της επιστήμης :

Είναι φυσικό ν’ αναρωτηθούμε “ποιος από τους δίδυμους αδερφούς ταξίδεψε με ταχύτητα πλησίον εκείνης του φωτός” διότι αυτός θα είναι που δε θα γέρασε. Στο σύστημα αναφοράς του Σταμάτη αυτός έμεινε στη Γη ενώ ο Γρηγόρης έφυγε για στο ταξίδι. Απ’ την άλλη πλευρά κάποιος άλλος από αλλού μπορεί να πει ότι ο Σταμάτης μαζί με τη Γη ταξίδεψε με την προαναφερθείσα ταχύτητα και κατόπιν επέστρεψαν. Ακριβώς αυτό είναι το παράδοξο.

Για να το λύσουμε πρέπει να επισημάνουμε την προσοχή μας στο γεγονός ότι, για να συναντηθούν κινήθηκαν με διαφορετική κατεύθυνση και ταχύτητα κατά τη διάρκεια του ταξιδιού. Έτσι, δε μπορούμε να υπολογίσουμε τη διαστολή του χρόνου στηριζόμενοι αποκλειστικά στην ειδική θεωρία της σχετικότητας.





Επίλογος

Δύο μεγάλες επαναστάσεις δημιούργησαν τη μοντέρνα φυσική : Η θεωρία της σχετικότητας και η κβαντική φυσική. Η πρώτη είναι μια θεωρία για το χώρο, το χρόνο και την κίνηση ενώ η δεύτερη περιγράφει τη συμπεριφορά της ύλης σε μοριακό, ατομικό αλλά και υποατομικό επίπεδο (ηλεκτρόνια, πρωτόνια, νετρόνια, κουάρκς, κ.α.). Οι συνέπειές τους είναι αινιγματικές αλλά και βαθιές. Ένα απ’ τα “θύματα” της ειδικής θεωρίας της σχετικότητας είναι η αντίληψη ότι ο χρόνος είναι απόλυτος και οικουμενικός (Newton). Ο Einstein απέδειξε, όπως είδαμε, ότι ο χρόνος είναι ελαστικός και συστέλλεται ή διαστέλλεται εξαιτίας της κίνησης. Κάθε παρατηρητής έχει την προσωπική του κλίμακα ροής χρόνου που είναι διαφορετική για κάποιον άλλο. Αυτή η “αλλόκοτη” συμπεριφορά του χρόνου ανοίγει το δρόμο για ταξίδια στο χρόνο, που έτσι κι αλλιώς κάνουμε στιγμή – στιγμή, αλλά σε κάποιους άλλους επιτρέπει να φτάνουν γρηγορότερα ! (παράδοξο διδύμων). Αρκεί να σκεφτούμε ότι ο Γρηγόρης “έχασε” 49 χρόνια γήινων πεπραγμένων ! Η στάση του φυσικού απέναντι στο χρόνο έχει επηρεαστεί πολύ απ’ τις εμπειρίες του (πειραματική επιβεβαίωση διαστολής του χρόνου) με αποτέλεσμα να επαναλαμβάνει τα λόγια από το φιλοσοφικό μυθιστόρημα του Βολταίρου “Το πεπρωμένο” : “Τίποτα δεν είναι πιο μεγάλο, αφού αυτός είναι το μέτρο της αιωνιότητας. Τίποτα δεν είναι πιο μικρό αφού δε φτάνει για τα σχέδιά μας. Τίποτα δεν είναι πιο μακρύ γι’ αυτόν που περιμένει, για τον άρρωστο που πονάει. Τίποτα δεν είναι πιο σύντομο γι’ αυτόν που είναι ευτυχισμένος. Εκτείνεται μέχρι το άπειρο σιγά – σιγά. Ολοι οι άνθρωποι τον παραμελούν και όλοι λυπούνται για την απώλειά του. Τίποτα δε γίνεται χωρίς αυτόν. Μας κάνει να ξεχνάμε ότι είναι ανάξιο για το μέλλον ενώ χαρίζει την αθανασία στα άξια ! ”