Παρασκευή 29 Οκτωβρίου 2010

Νεφέλωμα του Καρκίνου

Αρχείο:Crab Nebula.jpg




















Το Νεφέλωμα Μ1 (εικόνα από το διαστημικό τηλεσκόπιο Hubble).


Αστερισμός: Ταύρος

Τύπος αντικειμένου: Υπόλειμμα υπερκαινοφανούς αστέρα
Συντεταγμένες (εποχή 2000.0): α= 05h 34,5m δ= +22°01'
Φαινόμενο μέγεθος: 8,4
Απόλυτο μέγεθος: -3,2
Φαινόμενες διαστάσεις 6 × 4
Απόσταση από τη Γη: 6.500 έτη φωτός

Το Νεφέλωμα του Καρκίνου (M1, NGC 1952), ή αλλιώς Νεφέλωμα Καρκίνος, είναι νεφέλωμα του γαλαξία μας που ανακαλύφτηκε το 1731 από τον Άγγλο γιατρό και αστρονόμο Τζον Μπέβις (John Bevis). Αποτελεί υπόλειμμα υπερκαινοφανούς αστέρα: ένα διαστελλόμενο νεφέλωμα αερίων, τα οποία τα είχε αποβάλει η έκρηξη υπερκαινοφανούς αστέρα που συνέβη στις 4 Ιουλίου του 1054, κοντά στο άστρο ζ Ταύρου, και η οποία καταγράφηκε από τους Κινέζους αστρονόμους της εποχής στα Χρονικά της Σινίκης. Παίρνει το όνομά του από το σχήμα του, που θυμίζει καβούρι (καρκίνος) όταν παρατηρείται με τηλεσκόπιο.

Το νεφέλωμα έχει σήμερα μήκος παραπάνω από έξι έτη φωτός, καθώς διαστέλλεται με ταχύτητα 1.000 km/sec και έχει εκτιμώμενη μάζα περίπου 1-5 ηλιακές μάζες. Ο υπερκαινοφανής που δημιούργησε το Μ1 ήταν τόσο λαμπρός ώστε ήταν ορατός με γυμνό μάτι ακόμη και τη μέρα για 23 ημέρες, ενώ ήταν ορατός τη νύχτα για περίπου δυο χρόνια, ξεπερνώντας την Αφροδίτη σε λαμπρότητα, μέχρι που χάθηκε από τον νυχτερινό ουρανό την άνοιξη του 1056. Οι Κινέζοι αστρονόμοι, στα χρονικά των οποίων καταγράφηκε εκτεταμένα το κοσμικό αυτό γεγονός, αποκάλεσαν τον αστέρα αυτόν επισκέπτη αστέρα.
Το Νεφέλωμα του Καρκίνου εντοπίζεται στον αστερισμό του Ταύρου και είναι το πρώτο αντικείμενο του καταλόγου του Σαρλ Μεσιέ. Απέχει από τη Γη περίπου 6.500 έτη φωτός. Για το λόγο αυτό, το κοσμικό γεγονός που το δημιούργησε συνέβη στην πραγματικότητα 6.500 χρόνια πριν γίνει ορατό, δηλαδή περίπου το 5.400 π.Χ. Στο κέντρο του νεφελώματος βρίσκεται το πάλσαρ του Καρκίνου (γνωστό και ως PSR B0531+21), ένας αστέρας νετρονίων με διάμετρο 20 περίπου χιλιoμέτρων που ανακαλύφτηκε το 1968: ήταν η πρώτη παρατήρηση πάλσαρ σε υπόλειμμα υπερκαινοφανούς, μια θεμελιώδης ανακάλυψη για την εξήγηση του φαινομένου των πάλσαρ ως αστέρων νετρονίων. Το πάλσαρ του Καρκίνου έχει περίοδο περιστροφής 33 χιλιοστά του δευτερολέπτου, δηλαδή περιστρέφεται 30 φορές το δευτερόλεπτο, και οι δέσμες ακτινοβολίας που εκπέμπονται αλληλεπιδρούν με τα αέρια του νεφελώματος προκαλώντας περίπλοκες μορφές ακτινοβολίας συγχρότρον και φθορισμού. Το πιο δυναμικό τμήμα του εσωτερικού του νεφελώματος είναι το σημείο όπου ένας από τους πολικούς πίδακες του πάλσαρ συναντά το περιβάλλον υλικό, σχηματίζοντας ένα κρουστικό κύμα. Το σχήμα και η θέση αυτού του κρουστικού κύματος αλλάζουν γρήγορα, με τον ισημερινό άνεμο να εμφανίζεται σαν μια σειρά θυσάνων που φωτίζονται και εξαφανίζονται ενώ μετακινούνται απομακρυνόμενοι από το πάλσαρ για να διαλυθούν στο κύριο τμήμα του νεφελώματος. Το πάλσαρ του Καρκίνου είναι μια από τις γνωστότερες ουράνιες πηγές αυτής της κατηγορίας, και η εκπομπή του αποκαλύπτεται σε σχεδόν ολόκληρο το ηλεκτρομαγνητικό φάσμα, από την περιοχή των ραδιοκυμάτων έως τις ακτίνες γ υψηλών ενεργειών.
Το Νεφέλωμα Καρκίνος χρησιμοποιείται συχνά ως μονάδα μέτρησης στην αστρονομία των ακτίνων Χ: είναι πολύ φωτεινό σε αυτήν την περιοχή του φάσματος, και η ροή του είναι σταθερή (εξαίρεση αποτελεί το ίδιο το πάλσαρ). Το πάλσαρ στέλνει ένα ισχυρό περιοδικό σήμα που μπορεί να χρησιμοποιηθεί για τον έλεγχο του χρονισμού των ανιχνευτών ακτίνων Χ.
Στην αστρονομία των ακτίνων X, οι όροι "Crab" (αγγλική λέξη που σημαίνει "Καρκίνος" , ‘’καβούρι’’) και "milliCrab" χρησιμοποιούνται μερικές φορές ως μονάδες ροής. Πολύ λίγες πηγές ακτίνων Χ έχουν φωτεινότητα μεγαλύτερη του 1 Crab.

Γαλαξίας της Δίνης

Αρχείο:Messier51 sRGB.jpg















Ο γαλαξίας της δίνης (whirlpool galaxy) επίσης γνωστός ως Μεσιέ 51α, Μ51α ή ngc 5194 είναι ένας σπειροειδής γαλαξίας με καθαρή δομή βραχιόνων που αλληλεπιδρά με το NGC 5195 σε απόσταση 23 MLy στον αστερισμό των θηρευτικών κυνών. Είναι ένας από τους πιο διάσημους γαλαξίες. Ο γαλαξίας και ο συνοδός του παρατηρούνται εύκολα από τους ερασιτέχνες αστρονόμους ακόμη και με κυάλια. Ο γαλαξίας της δίνης είναι επίσης δημοφιλής στόχος για τους επαγγελματίες αστρονόμους που θέλουν να κατανοήσουν τη σπειροειδή μορφή και τις αλληλεπιδράσεις των γαλαξιών.

Ο γαλαξίας της δίνης ανακαλύφθηκε από τον Σαρλ Μεσιέ το 1773 και ο Πιέρ Μεσαίν ανακάλυψε τον συνοδό του το 1781. Όμως μόνο το 1845 ανακαλύφθηκε ότι ο γαλαξίας της δίνης ήταν σπειροειδής, από τον Λόρδο του Ρος.

Κάποιες φορές ο όρος Μ51 χρησιμοποιείται για να περιγράψει το ζευγάρι των γαλαξιών και τότε οι γαλαξίες λέγονται αντίστοιχα Μ51a (ngc 5194) και M51b (ngc 5195).
Ως τώρα δυο υπερκαινοφανείς αστέρες έχουν ανακαλυφθεί στο γαλαξία της δίνης, ο SN 1994I και ο SN2005cs, ο οποίος έφτασε σε λαμπρότητα 14.
Από αποτελέσματα που βασίζονται στον πρόσφατο σουπερνόβα 2005cs, ο γαλαξίας της δίνης απέχει περίπου 23 εκατομμύρια έτη φωτός, και φαινομενική διάμετρο 11',2 ο δίσκος του έχει διάμετρο περίπου 40.000 έτη φωτός.

Μια μαύρη τρύπα που περιτριγυρίζεται από ένα δίσκο σκόνης μπορεί να υπάρχει στο κέντρο του γαλαξία. Αυτή η τρύπα έχει δύο δίσκους σκόνης, οι οποίοι διασταυρώνονται, κάτι το οποίο είναι ασυνήθιστο.[5]
Εξαιτίας της αλληλεπίδρασής του με τον NGC 5195 έχει τονιστεί η σπειροειδής δομή του γαλαξία της δίνης. Επιπλέον, η συμπίεση του υδρογόνου έχει δημιουργήσει αστρογόνες περιοχές, οι οποίες εμφανίζονται ως φωτινοί μπλέ "κόμβοι" πάνω στους σπειροειδείς βραχίονες.
Ο γαλαξίας της δίνης είναι ο λαμπρότερος γαλαξίας στην ομάδα Μ51, η οποία περιλαμβάνει επίσης τον γαλαξία ηλιοτρόπιο, NGC 5023 και NGC 5229. Αυτή η μικρή ομάδα είναι μία υποδιαίρεση μια μεγαλύτερης ομάδας που αποτελείται από αυτή, την ομάδα Μ101 και την ομάδα NGC 5866, αν και τις περισσότερες φορές αναφέρονται ως ξεχωριστές οντότητες.



Παραπομπές

1.↑ R. W. Sinnott, editor (1988). The Complete New General Catalogue and Index Catalogue of Nebulae and Star Clusters by J. L. E. Dreyer. Sky Publishing Corporation and Cambridge University Press. ISBN 0-933-34651-4.
2.↑ 2,0 2,1 2,2 2,3 2,4 2,5 NASA/IPAC Extragalactic Database. Results for NGC 5194 (ανακτήθηκε 2006-12-06 )
3.↑ Takáts, K.; Vinkó, J. (2006). "Distance estimate and progenitor characteristics of SN 2005cs in M51". Monthly Notices of the Royal Astronomical Society, Online Early 372: 1735. doi:10.1111/j.1365-2966.2006.10974.x. http://adsabs.harvard.edu/cgi-bin/nph-bib_query?doi=10.1111%2Fj.1365-2966.2006.10974.x.
4.↑ SEDS.org (M51)
5.↑ NASA's Hubble Space Telescope Resolves a Dark "x" Across the Nucleus of M51. News Center. HubbleSite (June 8, 1992) (ανακτήθηκε August 7, 2006 )

Πέμπτη 28 Οκτωβρίου 2010

Μηχατρονική

Ο όρος Μηχατρονική είναι ένας σύγχρονος νεολογισμός που υποδηλώνει τον συνδυασμό των επιστημών της Μηχανολογίας, Ηλεκτρονικής - Ηλεκτρολογίας και Πληροφορικής.

Μηχατρονική: = Μηχανολογία + Ηλεκτρονική + Πληροφορική
Εφάμιλλος όρος για την Μηχατρονική είναι η Τεχνική Κυβερνητική - Technical Cybernetics.
Σπανίως χρησιμοποιείται και ο όρος Μηχανοτρονική ή Ηλεκρομηχανολογικοί Αυτοματισμοί.
Η Μηχατρονική θεωρείται εμπλουτισμός των κατά βάση μηχανολογικών συστημάτων με ηλεκτρονικά εξαρτήματα που αρκετά συχνά εμπεριέχουν λογισμικό, δηλαδή:
Μηχατρονική είναι η συνεργεία τριών επιστημών
Μηχανολογία
Ηλεκτρονική/Ηλεκτρολογία
Πληροφορική
με σκοπό την δημιουργία συστηματων που να απλοποιούν την παραγωγή.


Φιλοσοφία της Μηχατρονικής

Στην φιλοσοφία της Μηχατρονικής, ο ενσωματωμένος υπολογιστής ελέγχου είναι το κεντρικό στοιχείο, και ο πυρήνας της τεχνολογίας η οποία την καθιστά την Μηχατρονική ένα μοναδικό τομέα. Ψηφιακά και αναλογικά κυκλώματα, μαζί με επενεργητές και επιστημονικά όργανα περιβάλλουν άμεσα τον υπολογιστή ελέγχου και λειτουργούν προσαρμοστικά μεταξύ του υπολογιστή και του ελεγχόμενου φυσικού συστήματος. Τα χαρακτηριστικά που διαφοροποιούν το κάθε σύγχρονο μηχανικό σύστημα, καθορίζονται σε μεγάλο βαθμό από την εφευρετικότητα και αποτελεσματικότητα του ενσωματωμένου σε αυτό λογισμικό. Τα παρεμβαλλόμενα στοιχεία υποστηρίζουν το λογισμικό αυτό παρέχοντας του τις τρέχουσες πληροφορίες από το ελεγχόμενο σύστημα και μεταφράζοντας τις εντολές του σε ενεργή παροχή διαμορφωμένης ισχύος.


Ιστορία

Η Μηχατρονική επικεντρώνεται στη μηχανική, την ηλεκτρονική, την μηχανολογία συστημάτων ελέγχου, των ηλεκτρονικών υπολογιστών, τη μοριακή μηχανική (από νανοχημεία και Βιολογία), η οποία και σε συνδυασμό μεταξύ των, να καταστήσει την παραγωγή:
απλούστερη,
πιο οικονομική,
αξιόπιστη και ευέλικτη.
Ο όρος "Μηχανοτρονική" επινοήθηκε για πρώτη φορά από τον Tetsuro Mori, ανώτερο μηχανικό της ιαπωνικής εταιρείας Yaskawa, το 1969. Η Μηχατρονική εναλλακτικά, μπορεί να αναφέρεται και ως η Επιστήμη των "Ηλεκτρομηχανολογικών συστημάτων" ή λιγότερο συχνά ως η Επιστήμη "ελέγχου και του αυτοματισμού της μηχανικής".
Το 1982 επιτρέπεται από την εταιρεία η ελεύθερη χρήση του όρου.
Η Μηχατρονική αποτελεί το άμεσο εκείνο υπόβαθρο για την έρευνα στο τεχνικό τομέα της Κυβερνητικής. Σημαντικές φυσιογνωμίες και χρονολογίες σταθμοί στην Κυβερνητική και κατ' επέκταση στην Μηχατρονική υπήρξαν το 1936 από τον Άλαν Τούρινκ το 1948 από τον Νόρμπερτ Βίνερ και Μόρθυ (Morthy), με τις μηχανές ψηφιακού ελέγχου, που αρχικά αναπτύχθηκαν το 1946 ο Τηλεχειρισμός το 1951 από τον Γκερτζ (Goertz) καθώς και η ανώνυμη εταιρεία Bedford Associates που αναπτύχθηκε το 1968.

Ορισμοί Μηχατρονικής

Επί του παρόντος υπάρχουν διάφοροι ορισμοί της Μηχατρονικής, ανάλογα με την περιοχή ενδιαφέροντος. Ειδικότερα, η UNESCO ορίζει για την Μηχατρονική ότι είναι:
"Η συνεργιακή ολοκλήρωση της μηχανολογίας με την ηλεκτρονική και τον ευφυή υπολογιστή ελέγχου στον σχεδιασμό και την κατασκευή των προϊόντων και διαδικασιών."
Ωστόσο ένας πιο ενδιαφέρων ορισμός είναι ότι Μηχατρονική είναι: "Η Μελέτη και κατασκευή των ευφυών μηχανικών συστημάτων."
Κάτω από αυτή τη θεώρηση, η Μηχατρονική μπορεί να ερμηνευθεί ως "Η εφαρμογή πολύπλοκης διαδικασίας λήψης αποφάσεων κατά τη λειτουργία φυσικών συστημάτων."


Αντικείμενο

Η Μηχατρονική όπως προαναφέρθηκε, πρόκειται να συγχωνεύσει τις πιο πάνω επιστήμες και να περιγράψει αντί διάφορων προτύπων ένα γενικό ολιστικό Μηχατρονικό σύστημα.
Τα συστήματα της Μηχατρονικής έχουν το στόχο να μετατρέψουν με την τεχνολογία που τα διέπει:
Eπεξεργαστες
Ενεργοποιητές
Αισθητήρες κτλ
την μορφή της ενέργειας αλλά και των υλικών, την μεταφορά τους και την περαιτέρω επεξεργασία τους καθώς και τη μεταφορά ή/και αποθήκευση των πληροφοριών.


Μηχατρονικό Σύστημα

Ένα Μηχατρονικό σύστημα αποτελείται κυρίως από μηχανισμούς
Κίνησης,
Ελέγχου και
Αισθητήρες.
Η παραδοσιακή Μηχανική αποτελείται μόνο από μηχανισμούς και ενεργοποιητές, και προαιρετικά μπορεί να ενσωματωθεί ο έλεγχος. Η Μηχατρονική ενσωματώνει όλες τις απαιτούμενες προϋπόθέσεις για έλεγχο κλειστού βρόχου και ως εκ τούτου και τους ανάλογους αισθητήρες
Ένα Μηχατρονικό σύστημα είναι ένα σύστημα το οποίο ενσωματώνει την ψηφιακή επεξεργασία σήματος και την έκδοση του σήματος αυτού σε ένα τελικό σημείο δράσης μέσω ενός ενεργοποιητή, δημιουργώντας κινήσεις ή ενέργειες σχετικά με το σύστημα. Είναι ένα ολοκληρωμένο σύστημα με αισθητήρες, μικροεπεξεργαστές και ελεγκτές.
Τα συστήματα Μηχατρονικής μπορούν να διαιρεθούν έτσι σε ομάδες λειτουργίας, να διαμορφωθούν σε εκείνους τους βρόχους αυτόματου ελέγχου και να αποτελέσουν μέρος των ενοτήτων με τα μηχανικά - ηλεκτρικά - μαγνητικά - θερμικά - οπτικά στοιχεία τους και την τεχνολογία αισθητήρων, με σκοπό τη συλλογή των μετρημένων μεταβλητών της επιβλέπουσας κατάστασης, την ενεργοποίηση την κανονικοποίηση και τον έλεγχο καθώς επίσης και επεξεργασία και την πληροφορική στην επεξεργασία δεδομένων.


Παραδείγματα Μηχατρονικών Συστημάτων

1) Χειρισμός/συστήματα ρομπότ
2) Ενότητες εργαλειομηχανών
3) Ψηφιακές φωτογραφικές μηχανές
4) Κίνηση και έλεγχος φορέα CD/DVD Player
5) Ανεμογεννήτριες
6) Αντιολισθητικά συστήματα
7) Ηλεκτρονικά προγράμματα σταθερότητας οχημάτων
Ειδικά για τα δύο τελευταία παραδείγματα, τα ηλεκτρονικά και το λογισμικό αντικαθιστούν τα μικρότερης ακρίβειας, πιο ευπαθή και πιο ακριβά αναλογικά μηχανικά συστήματα με ψηφιακό ηλεκτρονικό έλεγχο, όπως τα συστήματα αντιεμπλοκής πέδησης (ABS) τα συστήματα ελέγχου μείγματος, προπορείας, σπινθιρισμού (ECU) και τα συστήματα ελέγχου ολίσθησης (ASP/ESP) στα αυτοκίνητα. Παγκοσμίως η μηχατρονική είναι αντικείμενο ειδίκευσης μηχανολόγων ή μηχανικών παραγωγής.


Εφαρμογές

Η απλούστερη εφαρμογή αφορά στην δυναμική ανάλυση ενός μηχανικού συστήματος και τον (ενεργό, ημί - ενεργό ή παθητικό) έλεγχό του.
Οι πιο σημαντικές εφαρμογές της Μηχατρονικής είναι η ρομποτική, τα συστήματα μεταφορών, συστήματα παραγωγής, μηχανές CNC, και οι βιομηχατρονικές νανομηχανές. Η τελειότερη όμως εφαρμογή της Μηχατρονικής είναι το Ρομπότ.
Πρέπει να σημειωθεί ότι η Ρομποτική είναι κλάδος της Μηχατρονικής.
Ρομποτική είναι η τέχνη του σχεδιασμού και της κατασκευής επαναπρογραμματιζομένων στοιχείων - συσκευών ευέλικτων και ικανών να εκτελούν διάφορες λειτουργίες. Το επίπεδο του αυτοματισμού είναι πολύ πιο ευέλικτο και δείχνει τις μελλοντικές τάσεις στην υπόλοιπη μηχατρονική.
Η εφαρμογή των μηχατρονική στη μεταφορά λαμβάνει χώρα κατά το σχεδιασμό των ενεργητικών μηχανισμούς (π.χ. ενεργός αναστολή), τους κραδασμούς ελέγχου, μηχανισμούς σταθεροποίησης και αυτόνομη πλοήγηση.
Στην κατασκευή, η Μηχατρονική έχει χρησιμοποιηθεί για μοντέλα διακριτών κατά περίπτωση συστημάτων και έχει υποβάλει αίτηση για το βέλτιστο σχεδιασμό των γραμμών παραγωγής, καθώς και τη βελτιστοποίηση των υφιστάμενων διαδικασιών. Επίσης, έχει συμβάλει στην αυτοματοποίηση των γραμμών παραγωγής και τη δημιουργία της έννοιας της ευέλικτης κατασκευής.
Μηχατρονική είναι η ιστορία του ψηφιακού ελέγχου μηχανών. Σε αυτό το θέμα τις τελευταίες εξελίξεις είναι οι εξής: της ανάλυσης, ανίχνευσης και ελέγχου των κραδασμών και της θερμοκρασίας στην εργαλεία κοπής, των μεθόδων διάγνωσης και εργαλεία κοπής ταχεία προτυποποίηση, EDM λέιζερ και σύνθεση.
Στο πεδίο αυτό γίνεται σύντομη εισαγωγή στην προσομοίωση δυναμικών μηχανικών συστημάτων, στον έλεγχο κατασκευών και ιδιαίτερα στην χρήση μεθόδων Ανάλυσης και Μοντελοποίησης:
ευφυούς ελέγχου και συγκεκριμένα, σε μεθόδους οι οποίες στηρίζονται σε
ασαφή λογική,
νευρωνικά δίκτυα
συναφείς υβριδικές τεχνικές.
γενετικούς αλγορίθμους
Η βασική γνώση της τεχνικής δυναμικής καθώς και η δυνατότητα τουλάχιστον χρήσης ηλεκτρονικού υπολογιστή θεωρούνται αναγκαία .
Καθώς τα συστήματα αυτά σπάνια πληρούν τις προυποθέσεις μιας μελέτης , το μαθηματικό μοντέλο που χρησιμοποιείται είναι πολύπλοκο (μη-γραμμικό), έχει ατέλειες κτλ. Για αυτο και χρησιμοποιούμε τα προαναφερθέντα ευφυή συστήματα ελέγχου .


Γενικότερες εφαρμογές
Αυτοματισμού, και στον τομέα της ρομποτικής
Σερβοϋδραυλική μηχανική
Αισθητήρες και συστήματα ελέγχου
Αυτοκίνητο Βιομηχανίες, στη σχεδίαση των υποσυστημάτων, όπως η αντι-εμπλοκή κατά την πέδηση
Μηχανικών Ηλεκτρονικών Υπολογιστών, του σχεδιασμού μηχανισμών, όπως οι οδηγοί δίσκων


Παραλλαγές Μηχατρονικής

Μια παραλλαγή του αναδυόμενου αυτού τομέα είναι η biomechatronics - Βιομηχατρονική, σκοπός της οποίας είναι η ενσωμάτωση μηχανικών μέρών με ένα ανθρώπινο ον, συνήθως με τη μορφή των αποσπώμενων συσκευών όπως exoskeleton. Αυτή είναι η "πραγματική ζωή" έκδοση του cyberware.
Η Βιομηχατρονική είναι η εφαρμογή της μηχατρονικής για την επίλυση των προβλημάτων των βιολογικών συστημάτων, και ιδίως την ανάπτυξη νέων τύπων προθέσεων, χειρουργικών προσομοιωτών, τον έλεγχο της θέσης των ιατρικών πράξεων (π.χ. καθετήρες), αναπηρικές πολυθρόνες και χειρουργικές τηλεχειρισμός
Επίσης η νανομηχανική είναι ένας τομέας που έχει επωφεληθεί από τις εξελίξεις στη μηχατρονική. Ένα πολύ προφανές παράδειγμα είναι η ανάπτυξη του σκληρού δίσκου.


Μηχανισμοί

Στον τομέα των μηχανισμών, τα κυριότερα προβλήματα είναι η μείωση της πολυπλοκότητας, η κατάργηση των μηχανισμών και
η σύνθεση των επιμέρους Μηχατρονικών μηχανισμών.
Η μείωση της πολυπλοκότητας σχετίζεται με τη μείωση του αριθμού των στοιχείων του μηχανισμού και τη χρήση ευφυών ελέγχου.
Η κατάργηση των μηχανισμών περιλαμβάνει την άμεση και πιο πολύπλοκη χρήση των ενεργοποιητών και των στοιχείων ελέγχου .


Οι Ενεργοποιητές

Για την λειτουργία ενός Μηχανισμού απαιτείται μια πηγή ενέργειας. Αρχικά, αυτή η πηγή ήταν ζωικής προέλευσης, στη συνέχεια προήλθε από την ισχύ που παράγεται από τη ροή του αέρα ή του νερού, και στη συνέχεια η παραγόμενη ενέργεια με ατμό, από μηχανές εσωτερικής καύσης και του εν τέλει γεννήτριες ηλεκτρικού ρεύματος. Για αν ειναι αυτή η δύναμη είναι ρυθμιζόμενη και να μπορεί να ελεγχθεί υπάρχουν οι ενεργοποιητές. Οι κυριότερες εξελίξεις της ενεργοποιητών στη Μηχατρονική είναι: Η άμεση διαχείριση με τη χρήση ηλεκτρομαγνητικών ενεργοποιητών και πιεζοηλεκτρικών ενεργοποιητών. Ένα ευρέως χρησιμοποιούμενο είδος των ενεργοποιητών οι ηλεκτρικοί κινητήρες, έχουν αναπτύξει νέα μαθηματικά μοντέλα στην έρευνα, νέα είδη διαχειρισης και νέες μορφές ελέγχου. Ένα είδος του ενεργοποιητή που έχει θα χρησιμοποιηθεί στο ευρέως σε ηλεκτροστατικούς ενεργοποιητές προ'ερχεται από το πεδίο της Νανομηχανικής


Ο Έλεγχος

Ένας χώρος αναπτυχθεί καλά στο Μηχανοτρονική είναι ο έλεγχος. Υπάρχουν δύο σημαντικές τάσεις: η χρήση των πλέον πρόσφατων τεχνικών της θεωρίας του αυτόματου ελέγχου και την ανάπτυξη ευφυών ελέγχου, η οποία επιδιώκει να βελτιώσει την αντίληψη του περιβάλλοντος και να αποκτήσει ένα καλύτερο εαυτό.Μερικά από τα πιο σημαντικά βήματα στον τομέα της αυτόματης ελέγχου είναι οι εξής: νευρωνικά δίκτυα, συρόμενη λειτουργία του ελέγχου, γεγονός διακριτά συστήματα, προσαρμοζόμενα ελέγχου, ασαφής λογική και σταθερό έλεγχο.


Οι Αισθητήρες

Οι αισθητήρες είναι συσκευές που μπορούν να μετρήσουν την πρόοδο της εγκατάστασης ή το περιβάλλον. Οι αισθητήρες για την ενσωμάτωση των μηχανισμών είναι το αποτέλεσμα της χρήσης κλειστού βρόχου ελέγχων. Ένα καλά ανεπτυγμένο παράδειγμα είναι η χρήση τεχνητής όρασης, το οποίο χρησιμοποιείται για να καθορίσει τη θέση και τον προσανατολισμό του μηχανισμού, το περιβάλλον ή τα εργαλεία, ωστόσο, δεν είναι πάντα δυνατή η απευθείας μέτρηση μιας μεταβλητής η αξία του εκτιμάται από το καθεστώς του παρατηρητή και φίλτρα. Ένα πρόβλημα που έχει πρόσφατα κατευθύνεται η ανάπτυξη των αναφορικός \ emph (από σταθερό) να καθορίσουν τη θέση και τον προσανατολισμό στην πλοήγηση προβλήματα να επιλυθούν με τη βοήθεια των παγκόσμιων συστημάτων εντοπισμού θέσης (GPS, για σύντομα).

Arduino


Το Arduino είναι μια υπολογιστική πλατφόρμα βασισμένη σε μια απλή μητρική πλακέτα με ενσωματωμένο μικροελεγκτή και εισόδους/εξόδους, και η οποία μπορεί να προγραμματιστεί με τη γλώσσα Wiring (ουσιαστικά πρόκειται για τη C++ με κάποιες μετατροπές). Το Arduino μπορεί να χρησιμοποιηθεί για την ανάπτυξη ανεξάρτητων διαδραστικών αντικειμένων αλλά και να συνδεθεί με υπολογιστή μέσω προγραμμάτων σε Processing, Max/MSP, Pure Data, SuperCollider.

Οι περισσότερες εκδόσεις του Arduino μπορούν να αγοραστούν προ-συναρμολογημένες. Το σχηματικό διάγραμμα και πληροφορίες για το υλικό είναι ελεύθερα διαθέσιμα για αυτούς που θέλουν να συναρμολογήσουν το Arduino μόνοι τους.


Το πρόγραμμα Arduino έλαβε τιμητική μνεία στην κατηγορία Digital Communities στο Prix Ars Electronica το 2006.

Πλατφόρμα:
Μία πλακέτα Arduino αποτελείται από ένα μικροελεγκτή Atmel AVR (ATmega328 και ATmega168 στις νεότερες εκδόσεις, ATmega8 στις παλαιότερες) και συμπληρωματικά εξαρτήματα για την διευκόλυνση του χρήστη στον προγραμματισμό και την ενσωμάτωση του σε άλλα κυκλώματα. Όλες οι πλακέτες περιλαμβάνουν ένα γραμμικό ρυθμιστή τάσης 5V και έναν κρυσταλλικό ταλαντωτή 16MHz (ή κεραμικό αντηχητή σε κάποιες παραλλαγές). Ο μικροελεγκτής είναι από κατασκευής προγραμματισμένος με ένα bootloader, έτσι ώστε να μην χρειάζεται εξωτερικός προγραμματιστής.
Γενικά όλες οι πλακέτες είναι προγραμματισμένες μέσω μιας σειριακής σύνδεσης RS-232, αλλά ο τρόπος με τον οποίο αυτό υλοποιείται ποικίλλει ανάλογα με την έκδοση. Οι σειριακές πλακέτες Arduino περιέχουν ένα απλό κύκλωμα αντιστροφής για την μετατροπή ανάμεσα στα σήματα των επιπέδων RS-232 και TTL.
Οι πλακέτες Arduino που κυκλοφορούν σήμερα στην αγορά, συμπεριλαμβανόμενης και της Diecimila, προγραμματίζονται μέσω USB, εφαρμόζοντας ένα τσίπ προσαρμογέα USB-to-serial όπως το FTDI FT232. Κάποιες παραλλαγές, όπως το Arduino mini και το ανεπίσημο Boarduino, χρησιμοποιούν προσαρμογέα USB-to-serial σε μορφή πλακέτας ή καλωδίου.
Η πλακέτα του Arduino έχει εκτεθειμένες τις περισσότερες επαφές εισόδου/εξόδου για χρήση με άλλα κυκλώματα. Το Diecimila, για παράδειγμα, παρέχει 14 ψηφιακές επαφές εισόδου/εξόδου, από τις οποίες οι 6 μπορούν να παράξουν σήματα PWM, και 6 αναλογικές εισόδους. Αυτές οι επαφές είναι διαθέσιμες στην κορυφή της πλακέτας μέσω θηλυκών συνδέσεων μεγέθους 0,1 ιντσών.
Διάφορες plug-in πλακέτες εφαρμογών γνωστές σαν “shields” είναι, επίσης, διαθέσιμες στο εμπόριο.

Λογισμικό:

Το IDE του Arduino είναι γραμμένο σε Java και μπορεί να τρέξει σε πολλαπλές πλατφόρμες. Περιλαμβάνει επεξεργαστή κώδικα (επεξεργαστή κειμένου με διάφορα εύχρηστα εργαλεία) και μεταγλωττιστή, και έχει την ικανότητα να φορτώνει εύκολα το πρόγραμμα μέσω σειριακής θύρας από τον υπολογιστή στην πλακέτα.
Το περιβάλλον ανάπτυξης είναι βασισμένο στην Processing, ένα περιβάλλον ανάπτυξης σχεδιασμένο να εισαγάγει στον προγραμματισμό νέους χρήστες μη εξοικειωμένους με την ανάπτυξη λογισμικού. Η συγκεκριμένη γλώσσα προγραμματισμού προέρχεται από την Wiring, μια γλώσσα που μοιάζει με την C η οποία παρέχει παρόμοια λειτουργικότητα για μια πιο περιορισμένης σχεδίασης πλακέτα, της οποίας το περιβάλλον ανάπτυξης βασίζεται επίσης στην Processing.



Καρτεσιανό ρομπότ


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  Κινηματικό διάγραμα ενός ρομπότ καρτεσιανών συντεταγμένων
 
Ένα καρτεσιανό ρομπότ ή γραμμικό ρομπότ είναι ένα βιομηχανικό ρομπότ του οποίου οι τρεις κύριοι άξονες ελέγχου είναι γραμμικοί (δηλαδή μετακινούνται σε ευθεία γραμμή και δεν γυρίζουν) και είναι σε γωνία 90 μοιρών ο ένας με τον άλλο. Μεταξύ άλλων πρωτερημάτων, αυτή η μηχανική διάταξη απλοποιεί τον έλεγχο ρομπότ και την επίλυση του βραχίωνα. Τα ρομπότ καρτεσιανών συντεταγμένων με τον οριζόντιο άξονα στηριγμένο και στα δύο άκρα του μερικές φορές ονομάζονται και ρομπότ γκάντρι (gantry robots). Συνήθως είναι πολύ μεγάλα.

Μια συνηθισμένη εφαρμογή αυτού του τύπου ρομπότ είναι η μηχανή αριθμητικού ελέγχου με υπολογιστή (computer numerical control machine ή CNC machine). Η απλούστερη εφαρμογή χρησιμοποιείται στους μύλους και στις μηχανές επιλογής όπου ένας δείκτης μετακινείται σε ένα πεδίο χ-ψ ενώ ένα εργαλείο υψώνεται ή κατεβαίνει σε ένα επίπεδο για να ζωγραφίσει ένα ακριβές σχέδιο.

Φωνόνιο

Το φωνόνιο (phonon) στη Φυσική, είναι το κβάντο (ελάχιστο διακριτό πακέτο) ενέργειας που μπορεί να μεταφερθεί με μηχανικές ταλαντώσεις των ατόμων σε ένα στερεό κρύσταλλο και αντιστοιχεί στη μηχανική ταλάντωση του ελάχιστου ταλαντωτή του κρυσταλλικού πλέγματος. Για μονοατομικό κρύσταλλο ο ελάχιστος ταλαντωτής είναι το ένα άτομο. Η μηχανική ταλάντωση του ελάχιστου ταλαντωτή αντιστοιχεί στο ελάχιστο στάσιμο κύμα που μπορεί να αναπτυχθεί στον κρύσταλλο από μια σειρά στάσιμα κύματα (ή «κανονικούς τρόπους» ή normal modes) που δύνανται να αναπτυχθούν σε αυτόν δεδομένων των διαστάσεών του. [Σημ. 1] Το ελάχιστο στάσιμο κύμα, που αντιστοιχεί στο φωνόνιο του μονοατομικού κρυστάλλου, έχει τον κυματαριθμό με όπου το μήκος κύματος του στάσιμου κύματος και η απόσταση μεταξύ δύο ατόμων του κρυστάλλου. Το μήκος κύματος δηλαδή που αντιστοιχεί στο φωνόνιο ισούται με δύο φορές την απόσταση του ενός ατόμου/ταλαντωτή από το διπλανό του στο πλέγμα του μονοατομικού κρυστάλλου. [Σημ. 2]























Στο σχήμα βλέπουμε τους έξι πρώτους κανονικούς ιδιορυθμούς ταλάντωσης μοντέλου γραμμικού μονοδιάστατου πλέγματος. Η ταλάντωση του πλέγματος είναι το άθροισμα ή συνισταμένη των κανονικών ιδιορυθμών. Η ενέργεια ταλάντωσης λαμβάνει διακριτές τιμές μετά από κάθε διέγερση που δέχεται. Το κάθε διακριτό πακέτο διέγερσης \,\hbar\omega_k ονομάζεται φωνόνιο.


Ο ρόλος του φωνονίου στο σχηματισμό και τη διάδοση του ήχου στα στερεά

Το φωνόνιο είναι το μικρότερο πακέτο ενέργειας που προστίθεται ή αφαιρείται για να μορφώσει έναν ήχο που ταξιδεύει μέσα στο στερεό, ως μέρος μιας σειράς «κανονικών τρόπων» ταλάντωσης του στερεού που σχηματίζουν τον ήχο με επαλληλία, των οποίων ο κυματαριθμός της ταλάντωσης λαμβάνει διακριτές τιμές όπου , όπου ο (πεπερασμένος) αριθμός των ατόμων του πλέγματος, και η απόσταση μεταξύ των ατόμων. Αυτοί οι «κανονικοί τρόποι» ταλάντωσης είναι τα στάσιμα κύματα, οι ιδιοσυχνότητες που δύνανται να αναπτυχθούν εντός του μακροσκοπικού συστήματος του στερεού και εξαρτώνται από τις διαστάσεις του. Οποιοσδήποτε ήχος ταξιδεύει μέσα στο στερεό μπορεί να αναχθεί σε επαλληλία των κανονικών αυτών τρόπων ταλάντωσης που ο μικρότερος όλων είναι το φωνόνιο.Τα φωνόνια ταξιδεύουν με ηχητικές (κλασσικές) ταχύτητες, πολύ μικρότερες δηλαδή της ταχύτητας του φωτός. Στην ουσία καθορίζουν την ταχύτητα διάδοσης του ήχου μέσα στα στερεά.

Η κβαντομηχανική προσέγγιση

Το ενδιαφέρον είναι ότι, εκτός από κβάντα ενεργειακών κυμάτων, τα φωνόνια μπορεί να θεωρηθεί ότι έχουν τη συμπεριφορά κβαντομηχανικού σωματιδίου, καθώς από το φορμαλισμό αντιστοιχίζονται σε αυτά ιδιότητες θέσης και ορμής. Οι ταλαντώσεις μεγάλου μήκους κύματος μέσα στα στερεά, όταν αναλυθούν με κβαντομηχανικούς όρους (σύμφωνα με τις αρχές του κυματοσωματιδιακού δυϊσμού) περιγράφονται με φωνόνια που παράγουν και διαδίδουν τον ήχο στα στερεά.


Άλλοι ρόλοι και ιδιότητες

Τα φωνόνια παίζουν σημαντικό ρόλο στη θερμική αγωγιμότητα στα υλικά ως φορείς ενέργειας μέσα σε αυτά και στη ηλεκτρική αγωγιμότητα των υλικών. Σε θερμοκρασίες που πλησιάζουν το απόλυτο μηδέν τα φωνόνια δημιουργούν συνθήκες ώστε τα ηλεκτρόνια να συνταξιδεύουν με μηδενικές σχεδόν απώλειες ενέργειας και με τον τρόπο αυτό εξηγείται το φαινόμενο της υπεραγωγιμότητας των υλικών, κυρίως μετάλλων, που την αναπτύσσουν σε αυτές τις θερμοκρασίες. Μεταφέροντας ενέργεια ακόμη αλλάζουν τη θερμοκρασία των αγωγών άρα και την ηλεκτρική αντίστασή τους. Επίσης με την αύξηση της θερμοκρασίας αλλάζουν οι ενδοατομικές αποστάσεις και αλλάζει και το φωνόνιο. Φαίνεται πως παίζουν σημαντικό ρόλο στο φαινόμενο σήραγγος με εφαρμογές στους ημιαγωγούς, στις μετρήσεις απεικόνισης επιφανειών από σαρωτικά μικροσκόπια σήραγγος κλπ.[1]























Οι ζώνες Brillouin σε διδιάστατα κρυσταλλικά συστήματα, α) σε τετραγωνικό και β) σε εξαγωνικό
 
 
Σημειώσεις

1.↑ Η εξέταση του μονοατομικού κρυστάλλου είναι μονοδιάστατη (γραμμική) και τα άτομα θεωρούνται σα να συνδέονται το καθένα με το διπλανό του με ελατήρια.



2.↑ Η πιο πολύπλοκη μελέτη των φωνονίων, σε περισσότερες διαστάσεις για παράδειγμα μέσα στο μονοατομικό κρύσταλλο ή σε πιο πολύπλοκο κρύσταλλο αλλάζει τα φωνόνια. Έτσι στη μονοδιάστατη μελέτη διατομικού κρυστάλλου εμφανίζονται δύο φωνόνια. Το φωνόνιο αντιστοιχεί στο μικρότερο κατ' απόλυτη τιμή κυματοδιάνυσμα της πρώτης Ζώνης Μπριλουίν ενός κρυστάλλου.

Ζωή στον Άρη: μεταμορφώνοντας τον κόκκινο πλανήτη σε μια νέα Γη

Οι προγενέστεροι αστρονόμοι είδαν τον Άρη και νόμισαν ότι ανακάλυψαν ένα πλανήτη διασχισμένο από αρδευτικά κανάλια και βλάστηση. Εκατό χρόνια αργότερα, το 1964, το διαστημόπλοιο Mariner 4 έφθασε στον Άρη. Η απογοήτευση για τους επιστήμονες πρέπει να ήταν μεγάλη, καθώς αντίκρισαν έναν άγονο κόσμο χωρίς ίχνη βλάστησης, νερού ή ζωής. Γι’ αυτούς τους επιστήμονες, η ιδέα ενός υγρού Άρη καλυπτόμενου από φυτά φάνηκε ξαφνικά ως σενάριο επιστημονικής φαντασίας.




Η επιφάνεια του Άρη- στερούμενη υγρού νερού και ζωής




Κατά τη διάρκεια των 40 ετών που ακολούθησαν από την αποστολή του Mariner 4, μάθαμε αρκετά για τον Άρη από τα πολλά διαστημόπλοια που στάλθηκαν στον Κόκκινο Πλανήτη. Τώρα γνωρίζουμε ότι η επιφανειακή θερμοκρασία του Άρη ποικίλει ανάμεσα στους -143°C στους πόλους έως τους +27°C στον ισημερινό. Ο Άρης διαθέτει μια πολύ αραιή ατμόσφαιρα (περίπου 1% της ατμοσφαιρικής πίεσης της Γης), καθόλου υγρό νερό, και η τυχαία υπεριώδης ακτινοβολία σε συνδυασμό με το ιδιαίτερα οξειδωτικό εδαφικό κάλυμμα, κάνουν την επιφάνεια του Άρη ένα θανατηφόρο μέρος για να ζήσεις. Παρόλα αυτά από εικόνες που δείχνουν μεγάλα κανάλια και δίκτυα ποταμών, καθώς και από τα περιπλανώμενα ρομπότ στον Άρη που δείχνουν στρώματα ιζημάτων και διαφοροποιήσεις των στρωμάτων από το νερό, έχουμε μάθει ότι τα πρώτα μισό δισεκατομμύριο χρόνια της ιστορίας του, ο Άρης ήταν ένα ζεστό, υγρό μέρος με πυκνή ατμόσφαιρα. Άρα μπορεί ο Άρης να γίνει κατοικήσιμος ξανά?

Άρης, ο κόκκινος πλανήτης



Αυτός είναι ο συλλογισμός του μετασχηματισμού σε Γη- αλλάζοντας ένα πλανήτη για να γίνει κατοικήσιμος όπως η Γη (terra = Γη). Η ιδέα του μετασχηματισμού σε Γη προτάθηκε αρχικά τη δεκαετία του 1930- καθαρά στον χώρο επιστημονικής φαντασίας. Όμως, τη δεκαετία του 1960, οι επιστήμονες ξεκίνησαν να σκέφτονται την ιδέα πιο σοβαρά. Είναι αυτό εφικτό; Μπορεί να γίνει με τη σύγχρονη τεχνολογία?

Για να απαντήσουμε στην ερώτηση εάν ο μετασχηματισμός του Άρη σε Γη είναι εφαρμόσιμος, πρέπει πρώτα να δούμε τι απαιτείται για τη ζωή και αν ο Άρης διαθέτει αυτά τα βασικά. Ο Άρης δεν μπορεί, στη σημερινή εποχή, να διατηρήσει υγρό νερό, εξαιτίας των χαμηλών θερμοκρασιών και της αραιής ατμόσφαιρας (η ατμοσφαιρική πίεση είναι χαμηλότερη του τριπλού σημείου του νερού, πίεση κάτω από την οποία ένα υλικό μπορεί να υπάρχει ως στερεό ή ατμός, ανεξάρτητα από τη θερμοκρασία). Εκτός από το νερό σε υγρή μορφή, η πιο βασική μορφή ζωής στη Γη χρειάζεται μία ατμόσφαιρα με την οποία να ανταλλάσει αέρια. Οι πιο πολύπλοκοι οργανισμοί έχουν πιο αυστηρές και περισσότερες απαιτήσεις – τα φυτά χρειάζονται μικρά ποσά οξυγόνου, τα ζώα απαιτούν μεγαλύτερη ατμοσφαιρική πίεση – αλλά οι μικροοργανισμοί έχουν μικρές απαιτήσεις.
Ο Άρης έχει παγωμένο διοξείδιο του άνθρακα (CO2 πάγος) στις άκρες των πόλων, το οποίο έχει απορροφηθεί από το έδαφος, και το οποίο θα απελευθερωνόταν αν ο πλανήτης θερμαινόταν. Η θέρμανση, επίσης, θα προκαλούσε την τήξη του παγωμένου νερού που έχει παρατηρηθεί στους πόλους. Επομένως, ο Άρης φαίνεται ότι διαθέτει τα δύο συστατικά-κλειδιά για τη διατήρηση της ζωής. Εκτός από αυτό, αν ο Άρης θερμανθεί με κάποια μέθοδο, θα υπάρξει θετική ανάδραση στην απελευθέρωση του διοξειδίου του άνθρακα από τους πόλους και από το εδαφικό κάλυμμα, συμπύκνωση της ατμόσφαιρας, περαιτέρω θέρμανση του πλανήτη, απελευθέρωση νερού, και ως επακόλουθο, συνθήκες που επιτρέπουν το υγρό νερό να διατηρηθεί στην επιφάνεια.

Σύγκρουση σωματιδίων μέσα σε επιταχυντή

















Σωματίδια εκλύονται από το σημείο κρούσης δύο σχετικιστικών (100GeV) ιόντων χρυσού στον ανιχνευτή STAR, σχετικιστικής κρούσης βαρέων ιόντων. Διακρίνονται ηλεκτρικά φορτισμένα σωματίδια από τις καμπύλες που χαράσσουν στο μαγνητικό πεδίο του ανιχνευτή.

Έκρηξη ατομικής βόμβας





















Εικόνα από την έκρηξη της ατομικής βόμβας στο Ναγκασάκι της Ιαπωνίας, το 1945. Το σύννεφο μανιταριού έφτασε σε ύψος 18χλμ περίπου πάνω από το σημείο της έκρηξης.

Δευτέρα 25 Οκτωβρίου 2010

Γαλαξίας της Ανδρομέδας

Andromeda galaxy.jpg
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Ο γαλαξίας της Ανδρομέδας (γνωστός και ως Μεσιέ 31) είναι ένας σπειροειδής γαλαξίας στον αστερισμό Ανδρομέδα, στον οποίο οφείλει και το όνομά του. Κατέχει ένα αξιοσημείωτο ρεκόρ: είναι το πιο απομακρυσμένο αντικείμενο ορατό με γυμνό μάτι. Βρίσκεται σε απόσταση μόλις 2,5 εκατομμυρίων ετών φωτός και μαζί με το Γαλαξία μας αποτελούν τους δύο μεγαλύτερους γαλαξίες της τοπικής ομάδας γαλαξιών. Αν και είναι μεγαλύτερος από το Γαλαξία μας, πιθανότατα ο δεύτερος περιέχει περισσότερη σκοτεινή ύλη και έχει μεγαλύτερη μάζα. [9] Νέες παρατηρήσεις δείχνουν ότι διαθέτει ένα τρις άστρα, τρεις με πέντε φορές περισσότερα από το Γαλαξία.[10]
Καθώς ο Γαλαξίας της Ανδρομέδας είναι ορατός με γυμνό μάτι, αναμενόμενο είναι να αναφέρεται πριν την πρώτη χρήση του τηλεσκοπίου στην Αστρονομία, το 1609 από τον Γαλιλαίο. Ακόμα και αναφορές από την αρχαιότητα θα έπρεπε να υπάρχουν. Ωστόσο αστρονόμοι όπως ο Ίππαρχος και ο Κλαύδιος Πτολεμαίος δεν κάνουν σχετική μνεία, πράγμα που οδήγησε μερικούς ερευνητές στην άποψη ότι η φαινόμενη λαμπρότητά του μεταβάλλεται και συγκεκριμένα αυξάνεται με την πάροδο των αιώνων. Βέβαια, πέρα από το ότι δεν υπάρχουν άλλες ενδείξεις για κάτι τέτοιο, η μεταβλητότητα ενός γαλαξία όπως αυτός σε τόσο μικρή χρονική κλίμακα θεωρείται σήμερα απίθανη και από θεωρητική άποψη. Εξάλλου και αστρονόμοι των νεώτερων χρόνων όπως ο Τύχων (Τυχό Μπραχέ, 1546-1601), ο τελευταίος μεγάλος παρατηρητής του ουρανού χωρίς τηλεσκόπιο, δεν τον αναφέρουν. Η πρώτη βεβαιωμένη μνεία του Γαλαξία της Ανδρομέδας γίνεται από τον Πέρση συγγραφέα Abd al Rahman Abu al Husain, πιο γνωστό ως Αλ Σούφι (Al Sufi), σε ένα χάρτη του έτους 964.[11] Αργότερα ο ίδιος τον περιγράφει ως «Το Μικρό Σύννεφο». Αιώνες μετά εμφανίζεται σε ένα ολλανδικό χάρτη των άστρων που χρονολογείται περίπου στο έτος 1500, χωρίς κανένα ειδικό σχόλιο.

Ο πρώτος που περιέγραψε το Γαλαξία της Ανδρομέδας με τη βοήθεια τηλεσκοπίου υπήρξε ο Βαυαρός αστρονόμος Σίμων Μάριος.[11] Συγκεκριμένα, στο έργο του De Mundo Joviali σημειώνει ότι τον παρατήρησε στις 15 Δεκεμβρίου 1612 και ότι έμοιαζε με «τη φλόγα ενός κεριού όπως φαίνεται τη νύκτα μέσα από κέρας» (εκείνη την εποχή φύλακες για τη νύκτα περιπολούσαν τις μικρές πόλεις της Ευρώπης εφοδιασμένοι με φανούς, τις φλόγες των κεριών των οποίων προστάτευαν παράθυρα καλυμμένα με λεπτότατη επίστρωση κέρατος). Η περιγραφή αυτή δίνει μια καλή ιδέα σχετικά με την εμφάνιση του Γαλαξία της Ανδρομέδας όταν παρατηρείται με μικρό τηλεσκόπιο, αν και άλλοι αστρονόμοι του 17ου αιώνα τον περιέγραψαν διαφορετικά.

















Η φωτογραφία του Μ31 από τον Ισαάκ Ρόμπερτς.

Ο Ισαάκ Ρόμπερτς ήταν ο πρώτος που φωτογράφησε το "νεφέλωμα της Αδρομέδας" το 1897. Στη φωτογραφία φαίνεται η σπειροειδής δομή του γαλαξία.
Από την παράθεση των αριθμών των διάφορων σωμάτων στον M31, όπως των πλανητικών νεφελωμάτων, σε σύγκριση με τους αντίστοιχους αριθμούς για το Γαλαξία μας, είναι φανερό ότι στον γειτονικό γαλαξία έχουν ανακαλυφθεί περισσότερα αντικείμενα από κάθε κατηγορία. Το γεγονός υποδηλώνει κάτι περισσότερο από την απλή διαπίστωση ότι ο Μ31 είναι λίγο μεγαλύτερος από τον δικό μας. Οι ανακαλύψεις στον M31 γίνονται ευκολότερα και μαζικά. Ο λόγος είναι ο εξής: Εκείνο που ισχύει για τον πυρήνα του M31, ισχύει και για το σύνολό του, δηλαδή ότι ενώ υπάρχουν προβλήματα στην παρατήρηση μεγάλων τμημάτων του Γαλαξία μας εξαιτίας της παρεμβολής νεφών αερίου ή σκόνης, το σύνολο σχεδόν του Μέγα Γαλαξία της Ανδρομέδας εμφανίζεται ακάλυπτο. Το φαινόμενο δεν είναι παράδοξο. Εξηγείται από τη σχετική θέση της Γης, η οποία βρίσκεται μέσα στο δίσκο του Γαλαξία μας και μάλιστα πολύ κοντά στο γαλαξιακό επίπεδο. Αντίθετα, βλέπουμε τον M31 από έξω, κάτι που συνιστά όπως αποδεικνύεται σημαντικό πλεονέκτημα, που αναιρεί το μειονέκτημα των πολύ μεγαλύτερων αποστάσεων των σωμάτων του M31.
Το ευνοϊκό αυτό δεδομένο συνδυάζεται με το γεγονός ότι ο M31 είναι ο εγγύτερος σπειροειδής γαλαξίας, για να καταστήσουν μαζί τον Μέγα Γαλαξία της Ανδρομέδας κυριολεκτικά πολύτιμο για την Αστρονομία. Η ομοιότητά του με το δικό μας, μάς βοηθά να γνωρίσουμε καλύτερα το Γαλαξία μας, ενώ ταυτόχρονα είναι εξίσου αναντικατάστατος ως πρότυπο όλων των σπειροειδών γαλαξιών του Σύμπαντος. Ο Μέγας Γαλαξίας της Ανδρομέδας έχει εμπλουτίσει τις γνώσεις μας κατά ένα μοναδικό τρόπο. `Ομως η έρευνα δεν έχει σταματήσει. Στις επόμενες δεκαετίες ο M31 θα μας αποκαλύψει, χωρίς αμφιβολία, ακόμα περισσότερα.
Το τηλεσκόπιο απεκάλυψε τις αμυδρότερες περιφερειακές περιοχές του γαλαξία, μαζί με τις οποίες καλύπτει μια αρκετά μεγάλη περιοχή του ουρανού, σχεδόν 4 μοίρες ή οκταπλάσια του δίσκου της Σελήνης. Η γενική αντίληψη, όπως και για κάθε άλλο γαλαξία ως τις αρχές του 20ου αιώνα, ήταν εκείνη ενός νεφελώματος από αέρια και σκόνη, με διαστάσεις το πολύ μερικά έτη φωτός ή πολύ μικρότερες. Ας σημειωθεί ότι μέχρι και το 1900 ήταν πολύ διαδεδομένη η άποψη ότι πρόκειται για ένα «νέο και τεράστιο Ηλιακό Σύστημα κατά τη διαδικασία του σχηματισμού του», αν και από τα τέλη του περασμένου αιώνα η χρήση της φωτογραφίας είχε αποκαλύψει τη σπειροειδή δομή του. Την πίστη αυτή αντανακλά και η χρησιμοποίηση των ονομασιών «σπειροειδές νεφέλωμα» (γενικός όρος για τους σπειροειδείς γαλαξίες), «Μέγα Νεφέλωμα» και «Βασίλισσα των Νεφελωμάτων».
Εδώ θα πρέπει να αναφερθεί ότι το όνομα «Γαλαξίας της Ανδρομέδας» δεν συνιστά ένα μονοσήμαντο και ακριβή προσδιορισμό, επειδή απλούστατα στον αστερισμό «Ανδρομέδα» υπάρχουν και άλλοι γαλαξίες. Για το λόγο αυτό τα ουράνια σώματα αναφέρονται συνήθως με τον αριθμό τους σε κάποιο κατάλογο. Ο Γαλαξίας της Ανδρομέδας είναι γνωστός και ως M31 (το M υποδηλώνει τον κατάλογο του Messier) ή ως NGC 224 (το NGC υποδηλώνει το Νέο Γενικό Κατάλογο).[1] `Ενας άλλος γαλαξίας στην Ανδρομέδα είναι ο M32 ή NGC 221, συνοδός του M31, που ανακαλύφθηκε το 1749 στη νότια πλευρά του Γαλαξία της Ανδρομέδας. Η σωστότερη κοινή ονομασία θα ήταν «Μέγας Γαλαξίας της Ανδρομέδας».
Ο φιλόσοφος Εμμάνουελ Καντ είχε υποστηρίξει ήδη από το 1755 ότι μερικά «νεφελώματα» όπως ο M31 δεν πρέπει να θεωρούνται ως τμήματα του Γαλαξία μας, αλλά ως νησίδες του Σύμπαντος πολύ πιο μακρινές. Το συμπέρασμά του δεν βασιζόταν σε παρατηρήσεις, αλλά σε ορισμένες γενικές ορθολογιστικές αρχές που χαρακτηρίζουν τη φιλοσοφική του θεωρία. Κατά ιδιότυπο τρόπο ο Καντ, αντίθετα με το σύνολο σχεδόν των αστρονόμων της εποχής του, είχε δίκιο.
Η απόδειξη ήρθε από τον Έντγουιν Χαμπλ. Το μεγάλο τηλεσκόπιο του όρους Wilson (2,54 m) του επέτρεψε να ανακαλύψει 40 κηφείδες στις σπείρες του M31. Είναι γνωστό από τις μελέτες της H. Leavitt και του H. Shapley ότι η περίοδος μεταβολής της λαμπρότητας στους κηφείδες είναι ανάλογη της απόλυτης λαμπρότητάς τους. Επομένως αρκεί να χρονομετρηθεί η περίοδος ενός κηφείδη και να εκτιμηθεί το φαινόμενο μέγεθός του για να βρεθεί η απόστασή του από εμάς με βάση τη βαθμονόμηση περιόδου-απόλυτης λαμπρότητας. Σε μια δημοσίευσή του το 1929 με τίτλο «`Ενα σπειροειδές νεφέλωμα ως ένα αστρικό σύστημα», που είχε ως αντικείμενο τον M31 και αποτελεί ορόσημο στην ιστορία της Αστρονομίας, ο Χαμπλ, εκτός από την παράθεση πολλών φωτογραφιών που έδειχναν χιλιάδες αμυδρούς ξεχωριστούς αστέρες στους σπειροειδείς βραχίονες, εκτίμησε την απόσταση του M31 σε 700 έως 900 χιλιάδες έτη φωτός.[12] Μετά από αυτό, το μέγεθος του τότε γνωστού Σύμπαντος αυξήθηκε κατά δέκα τουλάχιστον φορές! Και βέβαια άνοιξε ο δρόμος για να κατανοηθεί η αληθινή φύση και των πιο μακρινών γαλαξιών. Αλλά ακόμα και η τεράστια αυτή απόσταση αποδείχθηκε μικρότερη από την πραγματική. Μετά την ανακάλυψη του Walter Baade ότι οι κηφείδες των σφαιρωτών σμηνών, που είχαν χρησιμοποιηθεί για τη γενική βαθμονόμηση, ήταν 4 φορές αμυδρότεροι σε απόλυτο μέγεθος από τους κηφείδες ίσης περιόδου των σπειρών των γαλαξιών, τα πράγματα άλλαξαν. Ο Χαμπλ είχε υπολογίσει την απόσταση βασιζόμενος σε κηφείδες των σπειρών. `Ετσι σήμερα δεχόμαστε ότι η απόσταση του Μέγα Γαλαξία της Ανδρομέδας από εμάς ανέρχεται σε 2,38 ως 2,66 εκατομμύρια έτη φωτός. Επειδή το Ηλιακό Σύστημα απέχει 30.000 έτη φωτός από το κέντρο του δικού μας Γαλαξία, η πραγματική απόσταση του Γαλαξία μας από τον M31 (από το κέντρο του ως το κέντρο του M31) είναι ελαφρά διαφορετική, υπολογιζόμενη με βάση τους παραπάνω αριθμούς μεταξύ 2,4 και 2,68 εκατομμυρίων ετών φωτός. To 2003 μία νέα μέτρηση με βάση τους κηφεΐδες έδειξε μία απόσταση 2,51 ± 0,13 εκατομμύρια έτη φωτός.[3][2]
Το μέγεθος του Μέγα Γαλαξία της Ανδρομέδας είναι εντυπωσιακό. Η διάμετρός του φθάνει τις 140.000 έτη φωτός, ενώ οι αμυδρότερες περιφέρειές του που έχουν ανιχνευθεί του προσδίδουν μια διάμετρο έως 180.000 έτη φωτός.[13] Οι διαστάσεις αυτές είναι λίγο μεγαλύτερες από τις αντίστοιχες του Γαλαξία μας. Μεγαλύτερη είναι επίσης η απόλυτη λαμπρότητα του M31: περίπου 2,7 φορές ως προς εκείνη του Γαλαξία.[14] Επειδή όμως ο δίσκος του M31 φαίνεται από τη Γη πλάγια, με την οπτική μας ευθεία να σχηματίζει γωνία 77,5 μοιρών με τον άξονα του M31, μας φωτίζει με το φως «μόλις» 26 δισεκατομμυρίων αστέρων μέσου μεγέθους (όπως ο `Ηλιος),[14] παρά το γεγονός ότι ο αριθμός των αστέρων που περιέχει εκτιμάται σε ένα τρισεκατομμύριο έναντι 200 δισεκατομμυρίων άστρων του δικού μας Γαλαξία. Ο M31 έχει περίπου ίση μάζα με το Γαλαξία μας, ορατή μάζα περίπου 185 δισεκατομμύρια ηλιακές μάζες και ολική μάζα 1,23 τρισεκατομμύρια ηλιακές μάζες,[15] αν και ο Γαλαξίας μας κατά κάποιες εκτιμήσεις μπορεί να φθάνει συνολικώς το 1,9 τρις.
Ο M31, ο Γαλαξίας μας, τα Νέφη του Μαγγελάνου και ο M32 ανήκουν στη λεγόμενη Τοπική Ομάδα γαλαξιών. Τα συστήματα αυτά συγκρατούνται μαζί καθώς το Σύμπαν διαστέλλεται. Στην πραγματικότητα ο M31 προσεγγίζει το Γαλαξία μας με ταχύτητα σχεδόν 120 χιλιομέτρων ανά δευτερόλεπτο, το παράδειγμα όμως του διαστημοπλοίου εξηγεί γιατί η προσέγγιση αυτή δεν θα μπορούσε να προκαλέσει παρατηρήσιμη μεταβολή μέσα στις λίγες χιλιάδες χρόνια από την εποχή του Ιππάρχου μέχρι τις ημέρες μας!



Η δομή του Μ31



Από τους 30 γαλαξίες της Τοπικής Ομάδας, μόνο τρεις είναι σπειροειδείς: ο δικός μας, ο M31 και ο M33 (ή NGC 598). Από αυτούς, ο δικός μας και ο M31 είναι οι μεγαλύτεροι. Εξαιτίας του ότι ο M31 μας εμφανίζει πλάγια όψη, οι σπειροειδείς βραχίονες φαίνονται μόνο τμηματικά και για το λόγο αυτό η διάταξή τους δεν έχει ακόμα εξακριβωθεί. Υπάρχει αντιδικία μεταξύ δύο κυρίως απόψεων:
Η παλαιότερη από τις δύο απόψεις προέρχεται από τον Αμερικανό αστρονόμο Halton Arp, που υποστήριξε ότι ο Μέγας Γαλαξίας της Ανδρομέδας έχει δύο σπειροειδείς βραχίονες. Οι βραχίονες περιστρέφονται με τη φορά περιστροφής του Γαλαξία. Η άποψη αυτή υποστηρίζεται και από μια μελέτη με υπολογιστή που έκανε ο Gene Byrd του Πανεπιστημίου της Alabama την προηγούμενη δεκαετία.
Η νεώτερη άποψη είναι εκείνη του Αυστραλού αστρονόμου Agris Kalnajs του Αστεροσκοπείου του όρους Stromlo, και δέχεται την ύπαρξη μόνο ενός σπειροειδούς βραχίονα. Η σπείρα αυτή περιστρέφεται με αντίθετη φορά από ό,τι ο γαλαξίας ή οι σπείρες του Arp. Ο Kalnajs θεώρησε επομένως ότι τα ελεύθερα άκρα των σπειρών δείχνουν προς την κατεύθυνση της περιστροφής του γαλαξιακού δίσκου. Κάτι τέτοιο είναι ίσως αντίθετο προς τη διαίσθησή μας για την περιστροφή, κι όμως έχει προταθεί και για άλλους γαλαξίες, χωρίς πάντως να έχει επιβεβαιωθεί για κανένα. Κατά τον αστρονόμο του όρους Stromlo, στην περίπτωση του Μέγα Γαλαξία της Ανδρομέδας η γειτονική παρουσία του M32 ίσως εξηγεί την αντίστροφη περιφορά των βραχιόνων. Αν η περίοδος περιστροφής του M31 συμπίπτει με την περίοδο τυχόν περιφοράς του M32 γύρω από τον πρώτο και μεγαλύτερο «Γαλαξία της Ανδρομέδας», ή αν αυτές οι δύο περίοδοι έχουν ένα κοινό διαιρέτη, τότε ένας βαρυτικός συντονισμός των δύο γαλαξιών είναι ίσως και η αιτία για την ύπαρξη σπειροειδούς βραχίονα με ανάδρομη περιστροφή.
Μια ομάδα Γάλλων, Ελβετών και Ελλήνων αστρονόμων συμφώνησε, μετά την εξέταση στοιχείων για τη θέση πολλών σμηνών, με την άποψη της μιας σπείρας. `Ομως τα νέφη σκόνης δεν ταιριάζουν καλά σε καμιά σπειροειδή διάταξη. Το ζήτημα αποδεικνύει το πόσο ατελής είναι η κατανόηση των γαλαξιακών σπειρών γενικά.
Οι παρατηρήσεις της τελευταίας εικοσαετίας απέδειξαν ότι ο Μ31 και ο Γαλαξίας μας είναι στην πραγματικότητα ραβδωτοί σπειροειδείς γαλαξίες, απλώς οι ράβδοι τους δεν είναι εύκολα παρατηρήσιμοι. Έτσι ο Μ31 κατατάσσεται ως τύπου SBb στο σύστημα του Χαμπλ.[16] Ο Μέγας Γαλαξίας της Ανδρομέδας περιέχει, όπως όλοι οι σπειροειδείς γαλαξίες, ανοικτά αστρικά σμήνη και νέφη αερίου και σκόνης, που εντοπίζονται κυρίως μέσα στο δίσκο, καθώς και σφαιρωτά αστρικά σμήνη που σχηματίζουν μια άλω έξω από το γαλαξιακό επίπεδο. Βασιζόμενος σε παρατηρήσεις του M31, ο Baade ανακάλυψε το, θεμελιώδη σήμερα, διαχωρισμό των άστρων σε δύο πληθυσμούς. Ο Baade κατάλαβε ότι τα άστρα που κυριαρχούν στους πυρήνες των σπειροειδών γαλαξιών, στους ελλειπτικούς γαλαξίες και τα σφαιρωτά σμήνη, διαφέρουν από αυτά που κυριαρχούν στο δίσκο με τους σπειροειδείς βραχίονες και τα ανοικτά αστρικά σμήνη. Ονόμασε τα πρώτα «άστρα του πληθυσμού ΙΙ», ενώ τα δεύτερα «άστρα του πληθυσμού Ι».[17]



Τα αστρικά σμήνη του Μ31



Ο Γαλαξίας μας περιλαμβάνει περί τα χίλια ανοικτά αστρικά σμήνη, ένα από τα οποία είναι και οι γνωστές Πλειάδες (η Πούλια). Στον M31 έχουν ανακαλυφθεί μέχρι σήμερα 403 ανοικτά σμήνη, όλα σχεδόν από τον Paul Hodge του Πανεπιστημίου της Washington με χρήση του τηλεσκοπίου των 4 μέτρων στην κορυφή Kitt Peak στην Αριζόνα. Τα περισσότερα ανοικτά σμήνη του M31 έχουν διαμέτρους που πλησιάζουν τα 60 έτη φωτός, περίπου τριπλάσιες από εκείνη των Πλειάδων αλλά τυπικές της πλειοψηφίας των ανοικτών σμηνών του Γαλαξία μας. Οι ηλικίες των άστρων τους ποικίλλουν, αλλά είναι τυπικές του πληθυσμού Ι, με μερικά σμήνη να εμφανίζουν ηλικία κάτω των 100 εκατομμυρίων ετών. Η εξέταση των ανοικτών σμηνών μπορεί να χρησιμεύσει στη μελέτη της πρόσφατης ιστορίας της δημιουργίας νέων αστέρων στο Γαλαξία. Αν δεχθούμε ότι τα άστρα ενός σμήνους έχουν την ίδια περίπου ηλικία, που μπορεί να βρεθεί με την ανάπτυξη της στατιστικής των φασματικών τύπων, τότε ο ρυθμός της αστρικής δημιουργίας είναι δυνατό να διακριβωθεί χωρικά και χρονικά. Ο Hodge έδειξε ότι ο ρυθμός αυτός παρουσίαζε κατά το παρελθόν μια ποικιλία στα διάφορα μέρη του δίσκου του M31. Πρόσφατα υπήρξε υπερβολικά μεγάλος σε απόσταση περίπου 30 χιλιάδων ετών φωτός από το κέντρο του γαλαξία.
Ως προς τα σφαιρωτά σμήνη, ο Γαλαξίας μας περιλαμβάνει στην άλω του περίπου διακόσια σφαιρωτά σμήνη, ενώ στον M31 ανήκουν περί τα 400 ως 460.[18] Τα σφαιρωτά σμήνη προσφέρονται για εκτιμήσεις της μάζας του M31 επειδή βρίσκονται σε μεγάλες αποστάσεις από το κέντρο του, οπότε είναι δυνατό να μετρηθεί η βαρυτική αλληλεπίδρασή τους με το σύνολο της μάζας του γαλαξία. Πάντως οι ταχύτητες και οι τροχιές τους δεν έχουν ακόμα προσδιορισθεί, και επομένως το ζήτημα της μάζας του M31 παραμένει ανοικτό. Η χωρική κατανομή των σφαιρωτών σμηνών στον M31 είναι παρόμοια με αυτή του Γαλαξία μας: Αν r είναι η απόσταση από το κέντρο του Μέγα Γαλαξία της Ανδρομέδας, τότε ο αριθμός των σμηνών παρουσιάζει ένα μέγιστο σε r = 23.000 έτη φωτός με αμελητέα παρουσία σε μικρότερα r, κατόπιν μειώνεται ως 1/r² και τέλος μειώνεται ταχύτατα μετά τις 82.000 έτη φωτός, με τα μακρινότερα σφαιρωτά σμήνη σε r = 140.000 έτη φωτός. Η κατανομή φωτεινότητας των σφαιρωτών σμηνών είναι επίσης σχεδόν η ίδια, αν και με μικρότερη διασπορά. Με την εξαίρεση λοιπόν του γεγονότος ότι ο M31 έχει σχεδόν τα διπλά σφαιρωτά σμήνη, το μέγεθός τους φαίνεται περίπου το ίδιο και στους δύο γαλαξίες. Το λαμπρότερο σφαιρωτό σμήνος του γαλαξία είναι το Mayall 2 και είναι επίσης το μεγαλύτερο στην τοπική ομάδα γαλαξιών.[19]
Τα πράγματα αλλάζουν ως προς το φάσμα και τα χρώματα των φωτεινότερων σφαιρωτών σμηνών του M31. Τα πρώτα στάδια της ιστορίας του Μέγα Γαλαξία της Ανδρομέδας θα πρέπει να διέφεραν κατά αινιγματικό τρόπο από τα αντίστοιχα στάδια της ιστορίας του δικού μας Γαλαξία. Όλα τα σφαιρωτά σμήνη του Γαλαξία μας, ιδίως τα μακρινότερα, έχουν πολύ μικρή περιεκτικότητα σε βαρύτερα από το ήλιο στοιχεία (η «μεταλλικότητά» τους είναι μικρή), πράγμα αναμενόμενο για άστρα του πληθυσμού ΙΙ. Αντίθετα, τα σφαιρωτά σμήνη του M31 εμφανίζουν μεγάλη ποικιλία στις μεταλλικότητές τους. Ναι μεν υπάρχουν αρκετά σμήνη μικρής μεταλλικότητας, όμως στοιχεία από τη φωτομετρία και την ένταση των μεταλλικών γραμμών στα φάσματα δείχνουν και πολλά σμήνη με μέση ή και υψηλή μεταλλικότητα. Εννέα τέτοια σμήνη μελετήθηκαν από το Michael Tripicco του Πανεπιστημίου της Χαβάης στην περιοχή του κυανού-ιώδους φωτός. Βρέθηκε ότι το 80% αυτού του φωτός προέρχεται από νάνους, ενώ το φως αυτού του μήκους κύματος που εκπέμπουν τα πλουσιότερα σε μέταλλα σφαιρωτά σμήνη του δικού μας Γαλαξία προέρχεται κατά το ήμισυ από νάνους (όπως ο Ήλιος) και κατά το ήμισυ από γίγαντες αστέρες. Εξάλλου, οι φασματικές γραμμές της ρίζας κυάνιο (CN) είναι τόσο ισχυρές στα 9 σμήνη του M31, ώστε θα πρέπει τουλάχιστο αυτά να περιέχουν μεγάλους αριθμούς τόσο γιγάντων όσο και νάνων με περίπου κατά μία τάξη μεγέθους μεγαλύτερες συγκεντρώσεις CN από ό,τι ο ήλιος μας. Η κυριαρχία των θερμών νάνων - οι οποίοι έχουν κυανόλευκη απόχρωση - εξηγείται αν υποθέσουμε ότι τα μέσης και υψηλής μεταλλικότητας σμήνη του M31 είναι κατά πολύ νεώτερα των υψηλότερης μεταλλικότητας σμηνών (σφαιρωτών πάντα) του δικού μας Γαλαξία, όπως το M71. Η παραδοχή αυτή όμως δεν εξηγεί την περίσσεια CN.
Υπάρχουν ενδείξεις ότι τα υψηλής μεταλλικότητας σφαιρωτά σμήνη του M31, και συγκεκριμένα όσα έχουν μεταλλικότητα άνω του 0,25 της ηλιακής, συναποτελούν ένα ταχέως περιστρεφόμενο δισκοειδές υποσύστημα με ταχύτητες μέχρι και 200 χιλιομέτρων/δευτερόλεπτο. Η ύπαρξη κινηματικών διαφορών με τα καθαυτό σμήνη της άλω, είναι ίσως το μόνο που μπορεί να εξηγήσει την ύπαρξη σφαιρωτών σμηνών υψηλής μεταλλικότητας ακόμα και σε θέσεις πολύ μακριά από το δίσκο του M31. Πράγματι, στη στατιστική των αστρικών πληθυσμών, διαφορετικές κινηματικές ιδιότητες υποδηλώνουν και διαφορετική ιστορία και προέλευση.

Τα νέφη υδρογόνου του Μ31



Η μεγαλύτερη σπουδαιότητα των νεφών υδρογόνου είναι το ότι αποτελούν τις περιοχές σχηματισμού νέων ασέτρων. Το γεγονός συνειδητοποιήθηκε από τον Baade κατά την παρατήρηση του δίσκου του M31, και συνέτεινε στη σύλληψη της έννοιας του νεανικού πληθυσμού Ι. Φωτογραφίζοντας με φίλτρα, ο Baade κατόρθωσε να εντοπίσει και να χαρτογραφήσει 688 νέφη αερίου στον M31. Τα νέφη ήταν συγκεντρωμένα στους σπειροειδείς βραχίονες, με πιο έκδηλη την παρουσία τους σε απόσταση 30.000 έως 40.000 ετών φωτός από το κέντρο του γαλαξία.[20] Με τη μελέτη της εκπομπής ραδιοκυμάτων σε μήκος κύματος 21 cm, έγινε δυνατή η ανίχνευση των αραιότερων και ψυχρότερων νεφών υδρογόνου, στα οποία το αέριο δεν είναι ιονισμένο. Η θεμελιώδης μελέτη της ακτινοβολίας των 21 cm στον Μ31 πραγματοποιήθηκε από τον Morton Roberts το 1966.[21] Αποκαλύφθηκε ότι η κατανομή του ουδέτερου υδρογόνου ήταν δακτυλιοειδής, με τη μέγιστη πυκνότητα σε απόσταση περίπου 40.000 ετών φωτός από το κέντρο.[20] Συνέπιπτε έτσι τόσο με τα φωτεινότερα μέρη των σπειρών, όσο και με την υψηλότερη συγκέντρωση των θερμών νεφών του Baade. Ωστόσο τα ψυχρά νέφη συνεχίζουν σε αποστάσεις μέχρι και 110.000 ετών φωτός, ενώ η κατανομή των θερμών νεφών σβήνει μετά τις 55.000 έτη φωτός.[22] Για πολλούς λόγους, η διάταξη αυτή είναι αρκετά συνηθισμένη στους μεγάλους σπειροειδείς γαλαξίες. Η μεγαλύτερη απόσταση από το κέντρο του M31 στην οποία έχει ανιχνευθεί ουδέτερο υδρογόνο είναι 120.000 έτη φωτός, στο νοτιοδυτικό άκρο. (Ο M31 απλώνεται στον ουρανό με το μεγάλο του άξονα κατά τη βορειοανατολική-νοτιοδυτική διεύθυνση.) Μια πρόσφατη, λεπτομερέστερη, μελέτη του ουδέτερου υδρογόνου στον M31 πραγματοποιήθηκε στην Ολλανδία από τον Estaban Bajaja, που βρήκε μια αντιστοιχία των θέσεων του υδρογόνου και των θέσεων της ορατής σκόνης, αλλά μόνο στο μισό γαλαξία: στο βορειοανατολικό τμήμα.
Η κίνηση των νεφών υδρογόνου αποκλίνει από μια αυστηρά κυκλική τροχιά. Τα άστρα του πληθυσμού ΙΙ, στον πυρήνα και τα σφαιρωτά σμήνη, έχουν εξαιτίας της παλαιότητάς τους, κάθετες ή πολύ ελλειπτικές τροχιές και γενικά ανώμαλες κινήσεις. Αντίθετα, τα νέφη αερίου, η σκόνη και οι αστέρες στον δίσκο, που ανήκουν στον πληθυσμό Ι, πιστεύεται ότι έχουν σχεδόν κυκλικές τροχιές, όπως οι πλανήτες περί τον Ήλιο. Τα νέα λοιπόν δεδομένα διαφωνούν με την επικρατούσα άποψη: Από τους τρεις βραχίονες που διακρίνονται στο υδρογόνο της βορειοανατολικής πλευράς, τμήματα του εσώτατου βραχίονα φαίνονται να καταρρέουν προς το κέντρο με ταχύτητα άνω των 100 χιλιομέτρων/δευτερόλεπτο, που επιπροστίθεται στην περιφορά τους γύρω από το κέντρο. Η αιτία είναι άγνωστη. Προκαλείται η κατάρρευση αυτή από τη βαρυτική έλξη των μικρών συνοδών γαλαξιών του M31, όπως ο M32, ή μήπως κάποιο εκρηκτικό γεγονός απίστευτης σφοδρότητας είχε διαταράξει κατά το παρελθόν το τμήμα αυτό του γαλαξία; Οι κινήσεις του υδρογόνου μετρήθηκαν την περασμένη δεκαετία από μια γαλλική ομάδα υπό τον G. Courtes με τη βοήθεια του τηλεσκοπίου των 2 m στο Αστεροσκοπείο της Haute-Provence. Με βάση και τις μετρήσεις αυτές, που αφορούν το θερμό υδρογόνο, έχει διαμορφωθεί μια καθαρότερη εικόνα της περιστροφής του M31. Επιπλέον, οι τροχιακές ταχύτητες παρέχουν στοιχεία για την κατανομή της μάζας στο γαλαξία. Συγκεκριμένα οι ταχύτητες του υδρογόνου στα εξώτερα τμήματα του M31 υπαινίσσονται την ύπαρξη ενός τεράστιου περιβλήματος από σκοτεινή ύλη.

Ο αστρικός θάνατος στον M31



Το ότι οι αστέρες πεθαίνουν και στον Μ31 αποδεικνύεται από τα αντίστοιχα νεφελώματα: Οι Holland Ford και George Jacoby ανακάλυψαν 315 πλανητικά νεφελώματα στον M31.[23] Το πλήθος τους όμως υπολογίζεται ότι φθάνει στην πραγματικότητα τα 5.800, ενώ στο δικό μας Γαλαξία ο αριθμός των όσων έχουν ανακαλυφθεί είναι επίσης περίπου 300. Επειδή τα πλανητικά νεφελώματα σημαδεύουν αστρικούς θανάτους, είναι δυνατό να χαρτογραφήσουμε με τη βοήθειά τους τα μέρη εκείνα του γαλαξία όπου η φθορά του αστρικού πληθυσμού είναι εντονότερη. Στον πυρήνα του M31 πρέπει να δημιουργούνται κατά μέσο όρο 5 πλανητικά νεφελώματα ανά αιώνα. Οι μεγάλες ποσότητες αερίου που απελευθερώθηκαν έτσι (επειδή κάθε πλανητικό νεφέλωμα διαστέλλεται και αραιώνει συνεχώς, και τελικά τα αέριά του διαχέονται στο γαλαξία) σχημάτισαν με την πάροδο δισεκατομμυρίων ετών ένα δίσκο αερίου που περιφέρεται γύρω από τον πυρήνα. Ο κεντρικός αυτός δίσκος έχει ήδη ανιχνευθεί, και μάλιστα η μάζα του εμφανίζεται σχεδόν ίση με τη θεωρητικά αναμενόμενη.
Η άμεση παρατήρηση των λευκών νάνων του M31 είναι αδύνατη εξαιτίας της μικρής τους λαμπρότητας. Τα υπολείμματα όμως αυτά των θανάτων των άστρων μικρής μάζας μπορούν να εκδηλώσουν την παρουσία τους έμμεσα. Είναι γενικά παραδεκτό ότι οι αστρικές εκρήξεις τύπου nova («καινοφανείς αστέρες») παράγονται από διπλά συστήματα άστρων που περιλαμβάνουν ένα λευκό νάνο. Μέχρι σήμερα περισσότεροι από 200 καινοφανείς έχουν παρατηρηθεί στον M31, από τους οποίους οι πρώτοι 63 ανακαλύφθηκαν από τον ίδιο τον Χαμπλ με τη σύγκριση μιας διαδοχής φωτογραφιών (1923 και εξής) και χρησιμοποιήθηκαν ως μια επιπλέον απόδειξη για το απομεμακρυσμένο του M31.
Τα άστρα μεγάλης μάζας έχουν συχνά βίαιο θάνατο, μερικές φορές με τη μορφή ενός υπερκαινοφανούς («supernova »). Επειδή τέτοια άστρα είναι λίγα, ένα τόσο βίαιο συμβάν λαμβάνει χώρα σε ένα σπειροειδή γαλαξία περίπου κάθε 30 ως 100 χρόνια. Στον M31 μόνο 1 έκρηξη υπερκαινοφανούς έχει παρατηρηθεί μέχρι σήμερα, συγκεκριμένα στα μέσα Αυγούστου 1885, πολύ κοντά στον πυρήνα - μόλις 16΄΄ νοτιοανατολικά του - και είναι γνωστή ως S Ανδρομέδας. Κατά τις πρώτες νύκτες ήταν σχεδόν ορατή με γυμνό μάτι, συναγωνιζόμενη σε λαμπρότητα όλο το γαλαξία, κάτι όχι ασυνήθιστο για ένα υπερκαινοφανή: έλαμπε με την ισχύ 1,6 δισεκατομμυρίου ήλιων! Στη συνέχεια ωστόσο το φως του εξασθένησε αρκετά γρήγορα και όταν παρατηρήθηκε για τελευταία φορά (1 Φεβρουαρίου 1886), είχε κατέλθει στο 16ο μέγεθος, είχε δηλαδή καταστεί 6.300 φορές αμυδρότερο...[24]




Ο πυρήνας του Μ31



Όπως και ο πυρήνας του δικού μας Γαλαξία, έτσι και εκείνος του M31 αποτελεί ένα πεπλατυσμένο σφαιροειδές με ακτίνα περίπου 10.000 ετών φωτός, που περιστρέφεται ισοτροπικώς αλλά όχι και ομογενώς. Η ταχύτητα περιστροφής είναι δηλαδή η ίδια προς όλες τις διευθύνσεις, αλλά έχουμε μια ποικιλία διαφορετικών ταχυτήτων, τόσο γραμμικών όσο και γωνιακών, σε διαφορετικές αποστάσεις από το κέντρο. Ενώ όμως ο πυρήνας του Γαλαξία μας κρύβεται από τη Γη από μια πυκνή νεφελωματώδη συσσώρευση ύλης, ο πυρήνας του M31 φαίνεται πολύ καλύτερα. Για το λόγο αυτό, θεωρείται ο καλύτερος υποψήφιος για να επιβεβαιώσει τη σύγχρονη πολυσυζητημένη υπόθεση σχετικά με την ύπαρξη μιας γιγαντιαίας μαύρης τρύπας στο κέντρο πολλών γαλαξιών, συμπεριλαμβανομένου και του δικού μας.


















Η εικόνα του ΔΤΧ του πυρήνα του γαλαξία της Ανδρομέδας.

Η διπλή δομή είναι εμφανής.Στις 9 Σεπτεμβρίου 1971 μια παρατήρηση του "Stratoscope II", ενός τηλεσκοπίου 91 cm που υψώθηκε με τη βοήθεια αεροστάτου σε υψόμετρο 25 χιλιομέτρων, επέτρεψε τη μελέτη του πυρήνα του M31 με διακριτική ικανότητα 0,2΄΄ ή 2 περίπου ετών φωτός. Η ανάλυση αποκάλυψε χωρίς αμφιβολία ότι ο M31 κρύβει ένα πολύ συμπαγές, καλώς διαχωρισμένο, κέντρο, με ελλειψοειδές σχήμα και διαστάσεις 11 Χ 17 ετών φωτός. Το φαινόμενο μέγεθός του (το φως που στέλνει μέχρι τη Γη) υποδηλώνει απόλυτη λαμπρότητα 5,5 εκατομμύρια φορές μεγαλύτερη της ηλιακής, ενώ η μάζα του εκτιμάται σε 100 εκατομμύρια ηλιακές μάζες. Οι παρατηρήσεις στο υπεριώδες και το υπέρυθρο επιβεβαιώνουν την παρουσία του. Η πυκνότητα των άστρων στον περιορισμένο αυτό χώρο φθάνει τα 50 ή 60 άστρα ανά κυβικό έτος φωτός. Οι κινήσεις εκεί είναι ταχύτατες: η γραμμική ταχύτητα περιστροφής σε απόσταση 11 ετών φωτός από τον άξονα είναι μεγαλύτερη των 100 χιλιομέτρων/δευτερόλεπτο, πέρα όμως από τα 11 έτη φωτός η διασπορά των ταχυτήτων είναι μεγάλη, ώστε μερικές φορές υπερβαίνουν τα 240 χιλιόμετρα/δευτερόλεπτο. Η καλύτερη ερμηνεία των μετρήσεων αυτών παρέχεται από την υπόθεση της μαύρης τρύπας. Η συγκεκριμένη τρύπα έχει ίσως μάζα 70 ως 100 εκατομμύρια ηλιακές μάζες, οπότε ο ορίζοντας γεγονότων της (η «διάμετρός» της) θα έχει την ίδια τάξη μεγέθους με την τροχιά της Γης περί τον Ήλιο.
To 1991 o Tod R. Lauer χρησιμοποιήσε την ευρυπεδιακή κάμερα του ΔΤΧ για να φωτογραφήσει τόν ενδότερο πυρήνα του γαλαξία. Ο πυρήνας αποτελείται από δύο συγκεντρώσεις που βρίσκονται 1,5 παρσέκ μακρυά το ένα από το άλλο. Η λαμπρότερη συγκέντρωση βρίσκεται εκτός κέντρου, ενώ η πιο αχνή βρίσκεται στο πραγματικό κέντρο του γαλαξία και περιέχει μία μαύρη τρύπα με μάζα 3-5x107 M☉.[25]
Ομάδα γαλαξιών

Ο γαλαξίας της Ανδρομέδας βρίσκεται στην τοπική ομάδα γαλαξιών και είναι ένας από τους δύο μεγαλύτερους γαλαξίες του σμήνους, μαζί το Γαλαξία και έχει την δικιά του υποομάδα. Το σύστημα αυτό αποτελείται από 14 γαλαξίες-δορυφόρους, εκ'των οποίων οι πιο γνωστοί είναι οι Μεσιέ 32 και Μεσιέ 110, οι οποίοι φαίνεται ότι πρόσφατα αλληλεπίδρασαν με το Μ31.[26] Επίσης σε αυτήν την υποομάδα ανήκει και ο τρίτος σπειροειδής γαλαξίας της τοπικής ομάδας, ο γαλαξίας του Τριγώνου.




Μέλλον



Μετρήσεις δείχνουν ότι ο γαλαξίας της Ανδρομέδας πλησιάζει τον Γαλαξία με ταχύτητα 300 χιλιομέτρων το δευτερόλεπτο και μπορεί να συγκρουστεί μαζί του σε 3 ως 4 δις χρόνια. Αν συγκρουστούν, πιστεύεται ότι ο Ήλιος αλλά και άλλοι αστέρες μάλλον δεν θα συγκρουστούν με αστέρες της Ανδρομέδας, αλλά οι δύο γαλαξίες θα σχηματίσουν έναν ενιαίο ελλειπτικού σχήματος γαλαξία. Η διαδικασία της ένωσης αυτής εκτιμάται ότι θα διαρκέσει 1 δις χρόνια.



Παραπομπές



1.↑ 1,0 1,1 1,2 1,3 1,4 1,5 NASA/IPAC Extragalactic Database. Results for Messier 31 (ανακτήθηκε 2006-11-01 )


2.↑ 2,0 2,1 2,2 Karachentsev, I. D.; Kashibadze, O. G. (2006). "Masses of the local group and of the M81 group estimated from distortions in the local velocity field". Astrophysics 49 (1): 3-18. http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2006Ap.....49....3K.


3.↑ 3,0 3,1 I. D. Karachentsev, V. E. Karachentseva, W. K. Hutchmeier, D. I. Makarov (2004). "A Catalog of Neighboring Galaxies". Astronomical Journal 127: 2031–2068. http://adsabs.harvard.edu/abs/2004AJ....127.2031K.


4.↑ I. Ribas, C. Jordi, F. Vilardell, E.L. Fitzpatrick, R.W. Hilditch, F. Edward (2005). "First Determination of the Distance and Fundamental Properties of an Eclipsing Binary in the Andromeda Galaxy". Astrophysical Journal 635: L37-L40. http://adsabs.harvard.edu/abs/2005ApJ...635L..37R.


5.↑ McConnachie, A. W.; Irwin, M. J.; Ferguson, A. M. N.; Ibata, R. A.; Lewis, G. F.; Tanvir, N. (2005). "Distances and metallicities for 17 Local Group galaxies". Monthly Notices of the Royal Astronomical Society 356 (4): 979-997. http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2005MNRAS.356..979M.


6.↑ Jensen, Joseph B.; Tonry, John L.; Barris, Brian J.; Thompson, Rodger I.; Liu, Michael C.; Rieke, Marcia J.; Ajhar, Edward A.; Blakeslee, John P. (February 2003). "Measuring Distances and Probing the Unresolved Stellar Populations of Galaxies Using Infrared Surface Brightness Fluctuations". Astrophysical Journal 583 (2): 712-726. http://adsabs.harvard.edu/abs/2003ApJ...583..712J.


7.↑ SIMBAD-M31. SIMBAD Astronomical Database (ανακτήθηκε 2009-11-29 )


8.↑ Armando, Gil de Paz (2007). "The GALEX Ultraviolet Atlas of Nearby Galaxies". Astrophysical Journal (ApJS) 173: 185–255. doi:10.1086/516636. http://arxiv.org/abs/astro-ph/0606440. Ανακτήθηκε την 2009-11-29.


9.↑ "Dark matter comes out of the cold". BBC News. February 5, 2006. http://news.bbc.co.uk/2/hi/science/nature/4679220.stm. Ανακτήθηκε την 2006-05-24.


10.↑ Young, Kelly (2006-06-06). Andromeda galaxy hosts a trillion stars. NewScientist (ανακτήθηκε 2006-06-08 )


11.↑ 11,0 11,1 Kepple, George Robert; Glen W. Sanner (1998). The Night Sky Observer's Guide, Volume 1. Willmann-Bell, Inc.. σελ. 18. ISBN 0-943396-58-1.


12.↑ [[Έντουιν Χαμπλ
E.P. Hubble]] (1929). "A spiral nebula as a stellar system, Messier 31". APJ 69. doi:10.1086/143167. Bibcode: 1929ApJ....69..103H. http://adsabs.harvard.edu/abs/1929ApJ....69..103H.


13.↑ S. C. Chapman, R. Ibata, G. F. Lewis, A. M. N. Ferguson, M. Irwin, A. McConnachie, N. Tanvir (2006). "A kinematically selected, metal-poor spheroid in the outskirts of M31". Astrophysical Journal 653: 255. doi:10.1086/508599. http://adsabs.harvard.edu/cgi-bin/bib_query?astro-ph/0602604. Also see the press release, CalTech Media Relations (February 27, 2006). Andromeda's Stellar Halo Shows Galaxy's Origin to Be Similar to That of Milky Way. Δελτίο τύπου. Ανακτήθηκε στις 2006-05-24.


14.↑ 14,0 14,1 van den Bergh, Sidney (1999). "The local group of galaxies". The Astronomy and Astrophysics Review 9 (3–4): 273–318. doi:10.1007/s001590050019.


15.↑ N. W. Evans & M. I. Wilkinson (2000). "The mass of the Andromeda galaxy". Monthly Notices of the Royal Astronomical Society 316 (4): 929–942. doi:10.1046/j.1365-8711.2000.03645.x. http://adsabs.harvard.edu/cgi-bin/bib_query?2000MNRAS.316..929E.


16.↑ R.L. Beaton, E. Athanassoula, S.R. Majewski, P. Guhathakurta, M.F. Skrutskie, R.J. Patterson, M. Bureau (2006). "Unveiling the Boxy Bulge and Bar of the Andromeda Spiral Galaxy". Astrophysical Journal Letters 658: L91. doi:10.1086/514333. http://adsabs.harvard.edu/abs/2006astro.ph..5239B.


17.↑ W. Baade (1944). "The Resolution of Messier 32, NGC 205, and the Central Region of the Andromeda Nebula". Astrophysical Journal 100: 137. doi:10.1086/144650. http://adsabs.harvard.edu/abs/1944ApJ...100..137B.


18.↑ P. Barmby, J.P. Huchra (2001). "M31 Globular Clusters in the Hubble Space Telescope Archive. I. Cluster Detection and Completeness". Astronomical Journal 122: 2458–2468. doi:10.1086/323457. http://www.iop.org/EJ/article/1538-3881/122/5/2458/201285.html.


19.↑ Hubble news desk STSci-1996-11 (April 24, 1996). Hubble Spies Globular Cluster in Neighboring Galaxy. Δελτίο τύπου. Ανακτήθηκε στις 2006-05-26.


20.↑ 20,0 20,1 Esa Science News (October 14, 1998). ISO unveils the hidden rings of Andromeda. Δελτίο τύπου. Ανακτήθηκε στις 2006-05-24.


21.↑ Roberts, Morton S. (1966). "A High-Resolution 21-CM Hydrogen-Line Survey of the Andromeda Nebula". Astrophysical Journal 144. doi:10.1086/148645. Bibcode: 1966ApJ...144..639R. http://adsabs.harvard.edu/cgi-bin/bib_query?1966ApJ...144..639R.


22.↑ Nieten, Ch.; Neininger, N.; Guélin, M.; Ungerechts, H.; Lucas, R.; Berkhuijsen, E. M.; Beck, R.; Wielebinski, R (2006). "Molecular gas in the Andromeda galaxy". A&A 453 (2). doi:10.1051/0004-6361:20035672. Bibcode: 2006A&A...453..459N. http://adsabs.harvard.edu/cgi-bin/bib_query?2006A%26A...453..459N.


23.↑ Ford, H. C.; Jacoby, G. H.. "Planetary nebulae in Local-Group galaxies. VIII. A catalog of planetary nebulae in the Andromeda galaxy.". ApJS 38. doi:10.1086/190560. Bibcode: 1978ApJS...38..351F. http://adsabs.harvard.edu/cgi-bin/bib_query?1978ApJS...38..351F. Ανακτήθηκε την 26-07-10.


24.↑ Backhouse, T. W. (1888). "nebula in Andromeda and Nova, 1885". Monthly Notices of the Royal Astronomical Society 48: 108. Bibcode: 1888MNRAS..48..108B. http://adsabs.harvard.edu//abs/1888MNRAS..48..108B. Ανακτήθηκε την 2009-07-27.


25.↑ Lauer, T. R. et al. (1993). "Planetary camera observations of the double nucleus of M31". Astronomical Journal 106 (4): 1436–1447, 1710–1712. doi:10.1086/116737.


26.↑ K. Bekki, W.J. Couch, M.J. Drinkwater, M.D. Gregg (2001). "A New Formation Model for M32: A Threshed Early-type Spiral?". Astrophysical Journal 557 (1): L39–L42. doi:10.1086/323075. http://adsabs.harvard.edu/abs/2001ApJ...557L..39B.















Μέγα τείχος του Σλόουν
















Το Μέγα τείχος του Σλόαν είναι ένα γιγαντιαίο σύμπλεγμα που αποτελείται από γαλαξίες και είναι η μεγαλύτερη γνωστή δομή στο Σύμπαν. Η ανακάλυψη του ανακοινώθηκε στις 20 Οκτωβρίου 2003 από τους J. Richard Gott III και Mario Jurić του πανεπιστημίου Princeton και των συναδέλφων τους, βάσει των δεδομένων του Sloan Digital Sky Survey.[1] Το Μέγα τείχος έχει μήκος 1,37 δισεκατομμύρια έτη φωτός και απέχει περίπου ένα δισεκατομμύριο έτη φωτός από τη Γη.

Το Μέγα τείχος του Σλόαν είναι σχεδόν τρεις φορές μεγαλύτερο σε μήκος από το Μέγα τείχος γαλαξιών, το οποίο ανακαλύφθηκε από την Margaret Geller και τον John Huchra του Πανεπιστημίου του Χάρβαρντ το 1989.

Ο πλανήτης Δίας.

Δίας



















Ο πλανήτης Δίας φωτογραφημένος από το Βόγιατζερ 1 με μπλε φίλτρο. Αυτές οι φωτογραφίες λήφθηκαν από 01/06 έως 02/03/1979 · και το Βόγιατζερ 1 σε αυτή την περίοδο πέταξε από 58 εκατομμύρια έως 31 εκατομμύρια χιλιόμετρα από τον Δία.

243 Ίδη

243 ida crop.jpg
 
 
 
 
 
 
 
 
 
 
 
 
 
Η `Ιδη από το Γκαλιλέο. Η κουκίδα στα δεξιά είναι ο Δάκτυλος.
 
Η 243 Ίδη (243 Ida) είναι ένας αστεροειδής της Κύριας Ζώνης Αστεροειδών με απόλυτο μέγεθος (όπως ορίζεται για το Ηλιακό Σύστημα) 9,94. Ανακαλύφθηκε το 1884 από τον Αυστριακό αστρονόμο Γιόχαν Παλίζα και έλαβε το όνομά της από μία από τις τροφούς του Δία στην ελληνική μυθολογία. Παρατηρήσεις με τηλεσκόπιο από τη Γη οδήγησαν στην κατάταξη της Ίδης στους αστεροειδείς φασματικού τύπου S (λιθώδεις),[4] που είναι και οι πλέον συνηθισμένοι στο εσωτερικό τμήμα της Κύριας Ζώνης. Το σημαντικό σχετικά με την Ίδη είναι ότι στις 28 Αυγούστου 1993 πέρασε από πολύ κοντά της το διαστημόπλοιο Γκαλιλέο, στο ταξίδι του προς τον Δία και μετέδωσε εικόνες της. Η 243 Ίδη υπήρξε έτσι ο δεύτερος αστεροειδής στην Ιστορία τον οποίο επισκέφθηκε τεχνητό αντικείμενο και ο πρώτος του οποίου ανακαλύφθηκε φυσικός δορυφόρος, καθώς οι εικόνες του Γκαλιλέο απεκάλυψαν την ύπαρξη του δορυφόρου «Δάκτυλος», που περιφέρεται γύρω από την Ίδη.

Η Ίδη περιφέρεται γύρω από τον `Ηλιο μία φορά κάθε 4,84 γήινα έτη, ενώ συγχρόνως περιστρέφεται γύρω από τον εαυτό της μία φορά κάθε 4 ώρες και 38 λεπτά. Η μέση διάμετρός της είναι 31,4 km. Το σχήμα της είναι επίμηκες και ακανόνιστο (μοιάζει με μπουκάλι ή κρουασάν, αναλόγως της γωνίας παρατηρήσεως). Φαίνεται ότι αποτελείται από δύο ενωμένα σώματα. Η επιφάνειά της φέρει πολλούς κρατήρες (μία από τις μεγαλύτερες πυκνότητες κρατήρων για σώμα του Ηλιακού Συστήματος) που εμφανίζουν μεγάλη ποικιλία διαστάσεων και ηλικιών.
Η επίσκεψη του Γκαλιλέο επέτρεψε επίσης τη μέτρηση της μάζας της Ίδης και τη μελέτη με νέα δεδομένα της γεωλογίας των λιθωδών αστεροειδών. Η γνώση των συστάσεών τους επιτρέπει μία συσχέτιση ανάμεσα στους μετεωρίτες που βρίσκονται στη Γη και στην προέλευσή τους από τη ζώνη των αστεροειδών. Τα δεδομένα που αποκτήθηκαν από τη διέλευση του Γκαλιλέο υπέδειξαν τους αστεροειδείς τύπου S ως την πηγή των χονδριτών μετεωριτών, του συνηθέστερου τύπου που βρίσκεται στη Γη.
Ο αστεροειδής ανακαλύφθηκε στις 29 Σεπτεμβρίου 1884 από τον Παλίζα, ο οποίος παρατηρούσε από το Αστεροσκοπείο της Βιέννης, και ήταν ο 45ος αστεροειδής που ανεκάλυπτε ο συγκεκριμένος αστρονόμος.[9][1] Το όνομα δόθηκε, κατά παραχώρηση του Παλίζα, με επιλογή από τον Μόριτς φον Κούφνερ (Moriz von Kuffner), ένα Βιεννέζο ζυθοποιό και ερασιτέχνη αστρονόμο.[10][11] Στην ελληνική μυθολογία η ομώνυμη Ιδαία Νύμφη ή Κρητικοπούλα πριγκήπισσα ήταν μια από τις τροφούς του θεού Δία.[12] Ο 243ος αστεροειδής αναγνωρίσθηκε ως μέλος της Οικογένειας αστεροειδών της Κορωνίδος από τον Κιγιοτσούγκου Χιραγιάμα, που πρότεινε το 1918 ότι η ομάδα αυτή ήταν τα υπολείμματα ενός πρόδρομου ουράνιου σώματος που καταστράφηκε.[13]

Το φάσμα ανακλάσεως της Ίδης λήφθηκε στις 16 Σεπτεμβρίου 1980 από τους αστρονόμους David J. Tholen και Edward F. Tedesco ως μέρος της οκτάχρωμης επισκοπήσεως αστεροειδών ECAS[14]. Το φάσμα ταίριαζε με αυτά των αστεροειδών τύπου S.[15] Πολλές παρατηρήσεις της `Ιδης έγιναν στις αρχές του 1993 από τον Αστρονομικό Σταθμό Φλάγκσταφ του Ναυτικού Αστεροσκοπείο των ΗΠΑ και από το Αστεροσκοπείο του Όουκ Ριτζ. Αυτές βελτίωσαν την ακρίβεια με την οποία ήταν γνωστή η τροχιά της, ώστε να μειωθεί η αβεβαιότητα της θέσεώς της κατά την προσέγγιση του διαστημοπλοίου Γκαλιλέο.[16]

Διέλευση του Γκαλιλέο


Οι συναντήσεις του διαστημοπλοίου Γκαλιλέο με τους αστεροειδείς Γκάσπρα και Ίδη ήταν δευτερεύουσες στην αποστολή του να εξερευνήσει τον πλανήτη Δία. Οι αστεροειδείς αυτοί επιλέχθηκαν ως στόχοι στη βάση μιας νέας τακτικής της NASA να καλεί τους σχεδιαστές των αποστολών της να λαβαίνουν υπόψη τους διελεύσεις από αστεροειδείς όλων των σκαφών που διέσχιζαν την Κύρια Ζώνη Αστεροειδών.[17] Καμιά προηγούμενη αποστολή δεν είχε επιχειρήσει μια τέτοια διέλευση.[13] Το Γκαλιλέο εκτοξεύθηκε από το Διαστημικό Λεωφορείο Ατλαντίς (αποστολή STS-34) τον Οκτώβριο 1989. Η τροποποίηση της τροχιάς του, ώστε να πλησιάσει την Ίδη, απαιτούσε την κατανάλωση 35 επιπλέον κιλών προωθητικού. Οι σχεδιαστές της αποστολής καθυστέρησαν την απόφαση να επιχειρηθεί η διέλευση μέχρι να βεβαιωθούν ότι αυτή θα άφηνε το σκάφος με αρκετό προωθητικό ώστε να ολοκληρώσει την αποστολή του στον Δία.[17]


















Εικόνες από τη διέλευση, αρχίζοντας 5,4 ώρες πριν την κοντινότερη προσέγγιση.Η περιστροφή της Ίδης είναι εμφανής.

Η τροχιά του Γκαλιλέο το μετέφερε δύο φορές μέσα στην Κύρια Ζώνη Αστεροειδών πριν φθάσει στον Δία. Την δεύτερη φορά, πέρασε κοντά από την Ίδη στις 28 Αυγούστου 1993 με ταχύτητα 12,4 km/sec (44640 χιλιομέτρων την ώρα) σε σχέση με τον αστεροειδή.[17] Ο απεικονιστής του σκάφους φωτογράφησε την Ίδη από απόσταση 240.350 km μέχρι την εγγύτατη προσέγγιση, σε απόσταση 2390 km.[12][18] Η Ίδη ήταν ο δεύτερος αστεροειδής στην Ιστορία τον οποίο επισκέφθηκε τεχνητό αντικείμενο, μετά τη Γκάσπρα.[19] Περίπου το 95% της ολικής επιφάνειας της Ίδης έγινε ορατή από το διαστημόπλοιο κατά τη διέλευση.[5]























Η τροχιά του Galileo από την εκτόξευσή του ως την προσέγγισή του στον Δία

Η μετάδοση πολλών από τις εικόνες της Ίδης καθυστέρησε εξαιτίας μιας μόνιμης δυσλειτουργίας της κύριας κεραίας του Γκαλιλέο.[20] Οι πρώτες 5 εικόνες λήφθηκαν στη Γη τον Σεπτέμβριο 1993.[13] Αυτές οι εικόνες αποτελούσαν μία συρραφή που έδειχνε την επιφάνεια του αστεροειδούς με διακριτική ικανότητα 31 ως 38 μέτρων ανά εικονοστοιχείο.[21][22] Οι υπόλοιπες εικόνες μεταδόθηκαν την επόμενη άνοιξη, όταν το διαστημόπλοιο προσέγγισε περισσότερο τη Γη, επιτρέποντας καλύτερη μετάδοση.[13][23]


Ανακαλύψεις


Τα δεδομένα που μετέδωσε το Γκαλιλέο, όπως και η μεταγενέστερη αποστολή NEAR , επέτρεψαν την πρώτη μελέτη της Γεωλογίας των αστεροειδών.[24] Η σχετικώς μεγάλη επιφάνεια της Ίδης παρουσιάζει σημαντική ποικιλία γεωλογικών χαρακτηριστικών,[21] ενώ και η ανακάλυψη του δορυφόρου της Δακτύλου, του πρώτου επιβεβαιωμένου δορυφόρου αστεροειδή, παρέσχε πρόσθετα στοιχεία για τη σύσταση της Ίδης.[13]
Η Ίδη είχε ταξινομηθεί ως πυριτούχος αστεροειδής (S) με βάση γήινων φασματογράφων.[25] Η σύσταση των αστεροειδών φασματικού τύπου S ήταν αβέβαιη πριν τη διέλευση του Γκαλιλέο από την Ίδη, αλλά θεωρούσαν ότι είναι είτε ανάλογη των συνηθισμένων χονδριτών μετεωριτών (ordinary chondrites, OC), είτε μίγμα πυριτικών ορυκτών και σιδήρου.[4] Οι εκτιμήσεις της μέσης πυκνότητας της Ίδης με βάση την τροχιά του Δακτύλου γύρω της δίνουν άνω όριο 3,2 gr/cm3,[25] κάτι που σχεδόν αποκλείει την παρουσία σιδήρου.[13]
Οι εικόνες του Γκαλιλέο οδήγησαν επίσης στην ανακάλυψη ότι στην επιφάνεια της Ίδης λαμβάνει χώρα διαστημική αποσάθρωση, μία διαδικασία που κάνει τις παλαιότερες περιοχές να έχουν λίγο πιο κόκκινο στο χρώμα τους με την πάροδο του χρόνου.[13] Η ίδια διαδικασία επηρεάζει και τον Δάκτυλο, αλλά σε μικρότερο βαθμό.[26] Τα φάσματα ανακλάσεως των αρχαιότερων επιφανειών αντιστοιχούν ακριβώς στον φασματικό τύπο S, ενώ των νεότερων αντιστοιχούν στα φάσματα των μετεωριτών OC.[13]



















Λειασμένη τομή μετεωρίτη OC (χονδρίτη).

Τόσο η ανακάλυψη της διαστημική αποσάθρωσης όσο και της μικρής πυκνότητας οδήγησαν σε μία νέα κατανόηση για τη σχέση ανάμεσα στους αστεροειδείς τύπου S και τους μετεωρίτες τύπου OC. Οι πρώτοι είναι οι πλέον πολυάριθμοι στο εσωτερικό μέρος της Ζώνης των Αστεροειδών. Αντίστοιχα, οι μετεωρίτες OC είναι οι συνηθέστεροι στη Γη. Τα φάσματα ανακλάσεως των S αστεροειδών που λαμβάνονται με παρατηρήσεις από τη Γη ωστόσο δεν ταιριάζουν με αυτά των μετεωριτών OC. Η διέλευση του Γκαλιλέο από την Ίδη υπέδειξε ότι κάποιοι αστεροειδείς τύπου S, ιδίως μέλη της Οικογένειας της Κορωνίδος, θα μπορούσαν να είναι η πηγή αυτών των μετεωριτών.[13]


Φυσικά χαρακτηριστικά


















Σύγκριση των διαστάσεων της Ίδης, άλλων αστεροειδών, της Δήμητρας και του πλανήτη Άρη

Η μάζα της Ίδης υπολογίζεται μεταξύ 36,5 και 49,9 τρισεκατομμύρια τόνους.[27] Το βαρυτικό πεδίο της δίνει μία επιτάχυνση της βαρύτητας περίπου 0,3 ως 1,1 cm/sec2 σε διάφορα μέρη της επιφάνειάς της.[5] Αυτό το βαρυτικό πεδίο είναι τόσο ασθενές, ώστε ένας αστροναύτης θα μπορούσε να εκτελέσει ένα άλμα από το ένα άκρο του αστεροειδή στο άλλο, ενώ ένα σώμα κινούμενο με ταχύτητα πάνω από 20 m/sec θα μπορούσε να διαφύγει τελείως από το πεδίο βαρύτητας.[28][29]















Διαδοχικές εικόνες που δείχνουν την περιστροφή της Ίδης.

Η Ίδη είναι ένας αστεροειδής με επίμηκες και ακανόνιστο σχήμα,[24][20][30] αφού το μήκος της είναι 2,35 φορές μεγαλύτερο από το πλάτος της[24] και μία «μέση» τη διαχωρίζει σε δύο γεωλογικώς ανόμοια μέρη.[13] Αυτό το σχήμα είναι συμβατό με τη σύσταση του αστεροειδή από δύο μεγάλα συμπαγή κομμάτια με χαλαρά συντρίμματα (κορήματα) να γεμίζουν το μεταξύ τους διάστημα. Κάτι τέτοιο ωστόσο δεν παρατηρήθηκε στις εικόνες με υψηλή ανάλυση που έλαβε το Γκαλιλέο.[30] Παρότι υπάρχουν λίγες απότομες πλαγιές με κλίση ως 50°, γενικά οι κλίσεις δεν υπερβαίνουν τις 35°.[5] Το ακανόνιστο σχήμα του αστεροειδή είναι υπεύθυνο για το πολύ ανόμοιο βαρυτικό πεδίο.[31] Η επιτάχυνση της βαρύτητας στην επιφάνεια είναι ελάχιστη στα άκρα εξαιτίας της γρήγορης περιστροφής, αλλά είναι μικρότερη και κοντά στη «μέση», εξαιτίας της κατανομής της μάζας του αστεροειδούς στα δύο μέρη.[5]






Η Ίδη περιστρέφεται γύρω από τον εαυτό της μία φορά κάθε 4 ώρες και 38 λεπτά,[6][24] μία από τις ταχύτερες ιδιοπεριστροφές αστεροειδούς που είναι γνωστές.[32] Η σταθερή, με βραδύτατη μετάπτωση, περιστροφή, υποδηλώνει ότι δεν υπάρχουν μεγάλες διακυμάνσεις της πυκνότητας στο εσωτερικό του σώματος.[33] Ο άξονας περιστροφής της Ίδης μεταπίπτει με περίοδο 77 χιλιάδες χρόνια εξαιτίας των παλιρροϊκών δυνάμεων του Ηλίου που επιδρούν πάνω στο μη σφαιρικό σχήμα του αστεροειδούς.[34]


Επιφανειακά χαρακτηριστικά
















Σύνθεση εικόνων που κατέγραψε το διαστημόπλοιο Galileo 3,5 λεπτά της ώρας πριν την κοντινότερη προσέγγιση.

Η επιφάνειά της Ίδης φέρει κρατήρες, αυλακώσεις, μικρές λοφοσειρές και άλλες προεξοχές.[12] Καλύπτεται από ένα παχύ στρώμα ρηγολίθου, χαλαρού πετρώματος που αποκρύπτει τα υποκείμενα συμπαγή πετρώματα.


Ρηγόλιθος


Το πάχος του στρώματος του ρηγολίθου κυμαίνεται μεταξύ 50 και 100 μέτρων.[13] Αυτό το υλικό σχηματίζεται από συγκρούσεις άλλων σωμάτων και ανακατανέμεται πάνω στην επιφάνεια από γεωλογικές διαδικασίες.[29] Το Γκαλιλέο παρατήρησε ενδείξεις πρόσφατων κατολισθήσεων τέτοιων συντριμμάτων πάνω στον αστεροειδή.[22]
Ο ρηγόλιθος της Ίδης αποτελείται από τα πυριτικά ορυκτά ολιβίνη και πυρόξενο.[8][13] Εξαιτίας της διαστημική αποσάθρωσης,[26] η εμφάνισή του μεταβάλλεται με το χρόνο: ο παλαιότερος ρηγόλιθος εμφανίζεται πιο κόκκινος από τον πρόσφατο.[13]























Εικόνα ενός ογκόλιθου 150 μέτρων από το Γκαλιλέο σε συντεταγμένες 24,8° Ν και 2,8° Α.

Περί τους 20 μεγάλους ογκόλιθους, διαστάσεων 40 ως 150 μέτρων, ανακαλύφθηκαν μισοχωμένοι στον ρηγόλιθο της Ίδης.[13][28] και αποτελούν τα μεγαλύτερα κομμάτια ρηγόλιθου.[18] Επειδή οι ογκόλιθοι πρέπει να διασπώνται σχετικώς γρήγορα από νέες προσκρούσεις μετεωροειδών, όσοι είναι ορατοί στην επιφάνεια είτε θα σχηματίσθηκαν πρόσφατα, είτε αποκαλύφθηκαν πρόσφατα από κάποια πρόσκρουση.[31][29] Οι περισσότεροι βρίσκονται μέσα στους κρατήρες Λασκώ και Μαμμούθ, αλλά ίσως δεν σχηματίσθηκαν εκεί.[29] Αυτή η περιοχή προσελκύει θραύσματα εξαιτίας του ιδιόμορφου βαρυτικού πεδίου της `Ιδης.[31] Κάποιοι ίσως να εκτινάχθηκαν εκεί από τον νεαρό κρατήρα Ατσούρα στην αντίθετη πλευρά του αστεροειδούς.[35]


Δομές


Αρκετές μεγάλες δομές σημαδεύουν την επιφάνεια της Ίδης. Ο αστεροειδής εμφανίζεται να διαιρείται σε δύο ημίση, που αναφέρονται ως «Περιοχή 1» και «Περιοχή 2».[13] Η Περιοχή 1 με τη σειρά της έχει δύο μεγάλες δομές: μία εξέχουσα λοφοσειρά μήκους 40 km που ονομάστηκε Ράχη Τάουνσεντ (Townsend Dorsum)[36] και μία δαντελωτή διαμόρφωση που ονομάστηκε Βιέννη (Vienna Regio).[13]
Η Περιοχή 2 επιδεικνύει αρκετές ομάδες αυλάκων, συνήθως με πλάτος μέχρι 100 μέτρα και μήκος μέχρι 4 km.[13] Βρίσκονται κοντά στους κρατήρες Λασκώ, Μαμμούθ και Κάρτσνερ (Kartchner), αλλά δεν συνδέονται με αυτούς.[18]

Κρατήρες


Η επιφάνειά της Ίδης φέρει πολλούς κρατήρες (μία από τις μεγαλύτερες πυκνότητες κρατήρων για σώμα του Ηλιακού Συστήματος)[21][20], που εμφανίζουν μεγάλη ποικιλία διαστάσεων και ηλικιών:[20][13] Οι προσκρούσεις μικρότερων αστεροειδών και μετεωροειδών υπήρξαν η κύρια διαδικασία που διαμόρφωσε την επιφάνειά της.[24] Η δημιουργία κρατήρων έχει φθάσει το σημείο κορεσμού, δηλαδή οι νέες προσκρούσεις εξαλείφουν τα σημάδια των παλαιότερων, αφήνοντας τον συνολικό αριθμό κρατήρων σταθερό.[13] Οι αρχαιότεροι κρατήρες έχουν ηλικίες συγκρίσιμες με την ηλικία του ίδιου του αστεροειδούς, έχοντας ίσως σχηματισθεί κατά τη διάσπαση του πρωταρχικού σώματος που δημιούργησε την Οικογένεια της Κορωνίδος.[26] Ο μεγαλύτερος κρατήρας, ο Λασκώ, έχει διάμετρο σχεδόν 12 km.[30][37] Η Περιοχή 2 περιέχει όλους σχεδόν τους κρατήρες που είναι μεγαλύτεροι από 6 χιλιόμετρα.[13] Κάποιοι κρατήρες σχηματίζουν αλυσίδες κρατήρων.[22]
Ο ασύμμετρος κρατήρας Φίνγκαλ με διάμετρο 1,5 km στο νότιο μέροςΣτους μεγαλύτερους κρατήρες της Ίδης δόθηκαν ονόματα σπηλαίων και σηράγγων λάβας πάνω στη Γη.[38] Μία εξαίρεση στη μορφολογία τους είναι ο νέος και ασύμμετρος κρατήρας Φίνγκαλ, που έχει ένα έντονο όριο ανάμεσα στο εσωτερικό του και στο τοίχωμά του από τη μία πλευρά του.[18] Επίσης, σημαντικός κρατήρας είναι ο Αφόν, που ορίζει τον πρώτο Ιδαίο μεσημβρινό.[7]
Οι κρατήρες έχουν απλή δομή, με σχήμα μπολ, χωρίς επίπεδους πυθμένες ή κεντρικές κορυφές. Η κατανομή τους στην ιδαία επιφάνεια είναι ομοιόμορφη, εκτός από ένα έξαρμα βόρεια του κρατήρα Τσουκουτιέν, που έχει λιγότερους κρατήρες ανά μονάδα επιφάνειας.[18] Τα συντρίμματα που εκτοξεύουν οι προσκρούσεις αποτίθενται διαφορετικά στην Ίδη από ό,τι στη Σελήνη ή στους πλανήτες, εξαιτίας της ταχύτερης περιστροφής, της πολύ μικρής βαρύτητας και του ακανόνιστου σχήματος.[24] Οι στρώσεις των συντριμμάτων είναι άνισες γύρω από τους κρατήρες τους, ενώ τα περισσότερα θραύσματα διαφεύγουν για πάντα από τον αστεροειδή.[28]


Σύσταση


Η σύσταση του ιδαίου εσωτερικού δεν έχει αναλυθεί άμεσα, αλλά πρέπει να είναι παρόμοια με το υλικό των χονδριτικών μετεωριτών, σύμφωνα με τις παρατηρούμενες μεταβολές του χρώματος της επιφάνειας και τη μέση πυκνότητα του αστεροειδούς των 2,27 ως 3,10 gr/cm3.[4][26] Τα πυριτικά ορυκτά ολιβίνης και πυρόξενος ανιχνεύθηκαν στην επιφάνεια από το Γκαλιλέο.[39][8] Η περιεκτικότητα σε ορυκτά φαίνεται να είναι ομογενής σε όλη την έκταση του αστεροειδούς: Το Γκαλιλέο βρήκε ελάχιστες μεταβολές στην επιφάνεια, ενώ η περιστροφή του αστεροειδούς υποδηλώνει σταθερή πυκνότητα.[33][18] Αν η σύστασή της είναι παρόμοια με εκείνη των μετεωριτών OC, οι οποίοι έχουν πυκνότητες από 3,48 ως 3,64 gr/cm3, η Ίδη είναι πορώδης σε ποσοστό 11–42%.[4]
Το εσωτερικό του αστεροειδή πιθανώς περιέχει ποσότητες θραυσμάτων από προσκρούσεις που ονομάζονται «μεγαρηγόλιθος». Το ιδαίο στρώμα μεγαρηγόλιθου θα πρέπει να εκτείνεται από λίγες εκατοντάδες μέτρα κάτω από την επιφάνεια μέχρι βάθους λίγων χιλιομέτρων. Ακόμα και στον πυρήνα του αστεροειδούς, το συμπαγές πέτρωμα ίσως έχει μερικώς ρηγματωθεί κάτω από τους μεγάλους κρατήρες Μαμμούθ, Λασκώ και Ουντάρα.[18]


Τροχιά


Η τροχιά και οι θέσεις της Ίδης και πέντε πλανητών όπως είχε τις 9 Μαρτίου 2009Η Ίδη είναι μέλος της Οικογένειας αστεροειδών της Κορωνίδος στην Κύρια Ζώνη Αστεροειδών.[13] Η Ίδη περιστρέφεται γύρω από τον Ήλιο σε μία μέση απόσταση 2.862 ΑΜ μια φορά κάθε 4,84089 χρόνια σχεδόν στο επίπεδο της εκλειπτικής.[2]


Προέλευση


Η Ίδη προήλθε από τη διάσπαση του πρόδρομου ουράνιου σώματος της Οικογένειας αστεροειδών της Κορωνίδος, διαμέτρου περίπου 120 km.[6] Αυτός ο «προγεννήτωρ» είχε ήδη μερικώς διαφοροποιημένο εσωτερικό, με τα βαρύτερα στοιχεία (μέταλλα) καταβυθισμένα στον πυρήνα του. Η Ίδη κληρονόμησε αμελητέες ποσότητες αυτού του υλικού του αρχικού πυρήνα. Δεν είναι γνωστό πότε διασπάσθηκε αυτό το αρχικό σώμα, αλλά σύμφωνα με μία ανάλυση του αριθμού ιδαίων κρατήρων, η επιφάνεια της Ίδης έχει ηλικία πάνω από 1 δισεκατομμύριο χρόνια.[32] Ωστόσο, το σύστημα `Ιδης-Δακτύλου εκτιμάται ότι δεν μπορεί να έχει επιζήσει πάνω από 100 εκατομμύρια χρόνια.[40]
























Η τροχιά και οι θέσεις της Ίδης και πέντε πλανητών όπως είχε τις 9 Μαρτίου 2009.


 Δορυφόρος

Κύριο άρθρο: Δάκτυλος (δορυφόρος)
Ένας μικρός δορυφόρος με το όνομα Δάκτυλος περιφέρται γύρω από την Ίδη. Ο Δάκτυλος — πλήρης ονομασία (243) Ίδη I Δάκτυλος — ανακαλύφθηκε σε εικόνες που έλαβε το διαστημόπλοιο Γκαλιλέο στο ταξίδι του προς τον Δία, κατά την προσέγγισή του στην Ίδη το 1993. Ο Δάκτυλος ήταν ο πρώτος δορυφόρος αστεροειδούς που ανακαλύφθηκε με βεβαιότητα στην Ιστορία (απευθείας απεικόνιση).[13] Η επιφάνειά του φέρει πολλούς κρατήρες (όπως και της Ίδης). Η προέλευσή του δεν είναι γνωστή με βεβαιότητα, αλλά πιθανολογείται ότι είναι απλώς ένα θραύσμα από τη διάσπαση του πρόδρομου ουράνιου σώματος της Οικογένειας αστεροειδών της Κορωνίδος.


Παραπομπές
1.↑ 1,0 1,1 Raab, Herbert (2002). "Johann Palisa, the most successful visual discoverer of asteroids". Meeting on Asteroids and Comets in Europe. http://www.astrometrica.at/Papers/Palisa.pdf. Ανακτήθηκε την 2008-10-23.
2.↑ 2,0 2,1 2,2 2,3 JPL Small-Body Database Browser: 243 Ida. Jet Propulsion Laboratory (25 Αυγούστου 2008)
3.↑ 3,0 3,1 Britt, D. T. (2002). "Asteroid Density, Porosity, and Structure". Asteroids III (Tucson: University of Arizona): 485–500. Bibcode: 2002aste.conf..485B. http://www.lpi.usra.edu/books/AsteroidsIII/pdf/3022.pdf. Ανακτήθηκε την 2008-10-27.
4.↑ 4,0 4,1 4,2 4,3 4,4 Wilson, Lionel (Μάιος 1999). "The internal structures and densities of asteroids". Meteoritics & Planetary Science 34 (3): 479–483. Bibcode: 1999M&PS...34..479W. http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1999M%26PS...34..479W&data_type=PDF_HIGH&whole_paper=YES&type=PRINTER&filetype=.pdf. Ανακτήθηκε την 2008-10-22.
5.↑ 5,0 5,1 5,2 5,3 5,4 Thomas, Peter C. (1996). "The shape of Ida". Icarus 120 (1): 20–32. doi:10.1006/icar.1996.0033. Bibcode: 1996Icar..120...20T.
6.↑ 6,0 6,1 6,2 Vokrouhlicky, David (11 September 2003). "The vector alignments of asteroid spins by thermal torques". Nature 425 (6954): 147–151. doi:10.1038/nature01948. PMID 12968171. Bibcode: 2003Natur.425..147V. http://www.boulder.swri.edu/~bottke/Reprints/Vokrouhlicky-Nesvorny-Bottke-Nature-spins-2003.pdf. Ανακτήθηκε την 2008-10-23.
7.↑ 7,0 7,1 7,2 Seidelmann, P. Kenneth (Ιούλιος 2007). "Report of the IAU/IAG Working Group on cartographic coordinates and rotational elements: 2006". Celestial Mechanics and Dynamical Astronomy 98 (3): 155–180. doi:10.1007/s10569-007-9072-y. http://www.springerlink.com/content/e637756732j60270/fulltext.pdf. Ανακτήθηκε την 2009-01-12.
8.↑ 8,0 8,1 8,2 Holm, Jeanne (Ιούνιος 1994). "Discovery of Ida's Moon Indicates Possible "Families" of Asteroids". The Galileo Messenger (NASA) (34). http://www2.jpl.nasa.gov/galileo/mess34/Moon2.html. Ανακτήθηκε την 2008-10-23.
9.↑ Ridpath, John Clark (1897). The Standard American Encyclopedia of Arts, Sciences, History, Biography, Geography, Statistics, and General Knowledge. Έκδοση Εγκυκλοπαίδειας. http://books.google.com/books?id=1GMMAAAAYAAJ.
10.↑ Schmadel, Lutz D. (2003). "Catalogue of Minor Planet Names and Discovery Circumstances". Dictionary of minor planet names. επιτροπή IAU. 20. Springer. ISBN 9783540002383. http://books.google.com/books?id=KWrB1jPCa8AC&printsec=frontcover#PPA13,M1.
11.↑ Berger, Peter (2003). Gourvish, Terry. ed. Business and Politics in Europe, 1900–1970. Κέιμπριτζ, ΗΒ: Εφημερίδα Πανεπιστημιού του Κέιμπριτζ. ISBN 0521823447. http://books.google.com/books?id=uK99Gg2zBRQC.
12.↑ 12,0 12,1 12,2 Images of Asteroids Ida & Dactyl. ΝΑΣΑ (23 Αυγούτου 2005) (ανακτήθηκε 2008-12-04 )
13.↑ 13,00 13,01 13,02 13,03 13,04 13,05 13,06 13,07 13,08 13,09 13,10 13,11 13,12 13,13 13,14 13,15 13,16 13,17 13,18 13,19 13,20 13,21 Chapman, Clark R. (Οκτώβριος 1996). "S-Type Asteroids, Ordinary Chondrites, and Space Weathering: The Evidence from Galileo's Fly-bys of Gaspra and Ida" (PDF). Meteoritics 31: 699–725. Bibcode: 1996M&PS...31..699C. http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1996M%26PS...31..699C&data_type=PDF_HIGH&whole_paper=YES&type=PRINTER&filetype=.pdf. Ανακτήθηκε την 2008-10-27.
14.↑ Zellner, Tholen & Tedesco 1985, σσ. 357, 373
15.↑ Zellner, Ben (Μάρτιος 1985). "The eight-color asteroid survey: Results for 589 minor planets". Icarus 61 (3): 355–416. doi:10.1016/0019-1035(85)90133-2. Bibcode: 1985Icar...61..355Z.
16.↑ Owen, W. M., Jr. (Ιούνιος 1994). "The overlapping plates method applied to CCD observations of 243 Ida". The Astronomical Journal 107 (6): 2295–2298. doi:10.1086/117037. Bibcode: 1994AJ....107.2295O. http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1994AJ....107.2295O&data_type=PDF_HIGH&whole_paper=YES&type=PRINTER&filetype=.pdf. Ανακτήθηκε την 2009-04-03.
17.↑ 17,0 17,1 17,2 D'Amario, Louis A. (Μάιος 1992). "Galileo trajectory design". Space Science Reviews 60: 23–78. doi:10.1007/BF00216849. Bibcode: 1992SSRv...60...23D. http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1992SSRv...60...23D&data_type=PDF_HIGH&whole_paper=YES&type=PRINTER&filetype=.pdf. Ανακτήθηκε την 2008-10-22.
18.↑ 18,0 18,1 18,2 18,3 18,4 18,5 18,6 Sullivan, Robert J. (Μάρτιος 1996). "Geology of 243 Ida". Icarus 120 (1): 119–139. doi:10.1006/icar.1996.0041. Bibcode: 1996Icar..120..119S. http://www.planetary.brown.edu/pdfs/1685.pdf. Ανακτήθηκε την 2008-10-27.
19.↑ Cowen, Ron (2 October 1993). "Close-up of an asteroid: Galileo eyes Ida". 144. Science News. pp. 215. ISSN 0036-8423.
20.↑ 20,0 20,1 20,2 20,3 Chapman, Clark R. (1994). "The Galileo Encounters with Gaspra and Ida". Asteroids, Comets, Meteors: 357–365. Bibcode: 1994IAUS..160..357C. http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?db_key=AST&bibcode=1994IAUS..160..357C&letter=0&classic=YES&defaultprint=YES&whole_paper=YES&page=357&epage=357&send=Send+PDF&filetype=.pdf. Ανακτήθηκε την 2008-10-27.
21.↑ 21,0 21,1 21,2 Chapman, Clark R. (Μάρτιος 1994). "First Galileo image of asteroid 243 Ida". Abstracts of the 25th Lunar and Planetary Science Conference (Lunar and Planetary Institute): 237–238. Bibcode: 1994LPI....25..237C. http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1994LPI....25..237C&data_type=PDF_HIGH&whole_paper=YES&type=PRINTER&filetype=.pdf. Ανακτήθηκε την 2008-10-23.
22.↑ 22,0 22,1 22,2 Greeley, Ronald (Μάρτιος 1994). "Morphology and Geology of Asteroid Ida: Preliminary Galileo Imaging Observations". Abstracts of the 25th Lunar and Planetary Science Conference (Lunar and Planetary Institute): 469–470. Bibcode: 1994LPI....25..469G. http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1994LPI....25..469G&data_type=PDF_HIGH&whole_paper=YES&type=PRINTER&filetype=.pdf. Ανακτήθηκε την 2008-10-23.
23.↑ Monet, A. K. B. (Ιούνιος 1994). "Astrometry for the Galileo mission. 1: Asteroid encounters". The Astronomical Journal 107 (6): 2290–2294. doi:10.1086/117036. Bibcode: 1994AJ....107.2290M. http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1994AJ....107.2290M&data_type=PDF_HIGH&whole_paper=YES&type=PRINTER&filetype=.pdf. Ανακτήθηκε την 2008-10-23.
24.↑ 24,0 24,1 24,2 24,3 24,4 24,5 Geissler, Paul E. (1996). "Ejecta Reaccretion on Rapidly Rotating Asteroids: Implications for 243 Ida and 433 Eros". Completing the Inventory of the Solar System (Astronomical Society of the Pacific) 107: 57–67. Bibcode: 1996ASPC..107...57G. http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1996ASPC..107...57G&data_type=PDF_HIGH&whole_paper=YES&type=PRINTER&filetype=.pdf. Ανακτήθηκε την 2008-10-22.
25.↑ 25,0 25,1 Byrnes, Dennis V. (Δεκέμβριος 1994). "Solving for Dactyl's Orbit and Ida's Density". The Galileo Messenger (NASA) (35). http://www2.jpl.nasa.gov/galileo/mess35/DACTYL.html. Ανακτήθηκε την 2008-10-23.
26.↑ 26,0 26,1 26,2 26,3 Chapman, Clark R. (Σεπτέμβριος 1995). "Galileo Observations of Gaspra, Ida, and Dactyl: Implications for Meteoritics". Meteoritics 30 (5): 496. Bibcode: 1995Metic..30R.496C. http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1995Metic..30R.496C&data_type=PDF_HIGH&whole_paper=YES&type=PRINTER&filetype=.pdf. Ανακτήθηκε την 2008-10-23.
27.↑ Petit, Jean-Marc (Νοέμβριος 1997). "The Long-Term Dynamics of Dactyl’s Orbit". Icarus 130 (1): 177–197. doi:10.1006/icar.1997.5788. Bibcode: 1997Icar..130..177P. http://www.lpl.arizona.edu/~hurfordt/research/papers/Icarus130.pdf. Ανακτήθηκε την 2008-10-25.
28.↑ 28,0 28,1 28,2 Geissler, Paul E. (Μάρτιος 1996). "Erosion and Ejecta Reaccretion on 243 Ida and Its Moon". Icarus 120 (1): 140–157. doi:10.1006/icar.1996.0042. Bibcode: 1996Icar..120..140G. http://www.boulder.swri.edu/~bottke/Reprints/Geissler_Icarus_1996_120_140_Erosion_Ejecta_Ida.pdf. Ανακτήθηκε την 2009-03-26.
29.↑ 29,0 29,1 29,2 29,3 Lee, Pascal (Μάρτιος 1996). "Ejecta Blocks on 243 Ida and on Other Asteroids". Icarus 120 (1): 87–105. doi:10.1006/icar.1996.0039. Bibcode: 1996Icar..120...87L. http://www.planetary.brown.edu/pdfs/1684.pdf. Ανακτήθηκε την 2008-10-27.
30.↑ 30,0 30,1 30,2 Bottke, William F., Jr. (2002). "An Overview of the Asteroids: The Asteroids III Perspective". Asteroids III (Τουσόν: Πανεπιστήμιο της Αριζόνα): 3–15. Bibcode: 2002aste.conf....3B. http://www.boulder.swri.edu/~bottke/Reprints/Bottke-etal_2002_AstIII_Introduction.pdf. Ανακτήθηκε την 2008-10-23.
31.↑ 31,0 31,1 31,2 Cowen, Ron (1 Απριλίου 1995). "Idiosyncrasies of Ida—asteroid 243 Ida's irregular gravitational field" (PDF). 147. Science News. pp. 207. ISSN 0036-8423. http://www.sciencenews.org/pages/pdfs/data/1995/147-13/14713-14.pdf. Ανακτήθηκε την 2009-03-26.
32.↑ 32,0 32,1 Greenberg, Richard (Μάρτιος 1996). "Collisional and Dynamical History of Ida". Icarus 120 (1): 106–118. doi:10.1006/icar.1996.0040. Bibcode: 1996Icar..120..106G. http://www.boulder.swri.edu/~bottke/Reprints/Greenberg_1996_Icarus_120_106_Coll_Hist_Ida.pdf. Ανακτήθηκε την 2008-10-23.
33.↑ 33,0 33,1 Thomas, Peter C.; Prockter, Louise M. (28 Μαΐου 2004). "Tectonics of Small Bodies". Planetary Tectonics. Cambridge Planetary Science. 11. Cambridge University Press. ISBN 9780521765732. http://mahi.ucsd.edu/johnson/erth01/Asteroid_tectonics.pdf. Ανακτήθηκε την 2008-11-29.
34.↑ Slivan, Stephen Michael (Ιουνίος 1995). Spin-Axis Alignment of Koronis Family Asteroids. Ινστιτούτο Τεχνολογίας Μασσαχουσέτης. OCLC 32907677. http://hdl.handle.net/1721.1/11867. Ανακτήθηκε την 2009-04-10.
35.↑ Stooke, P. J. (1997). "Reflections on the Geology of 243 Ida". Lunar and Planetary Science XXVIII: 1385–1386. http://www.lpi.usra.edu/meetings/lpsc97/pdf/1045.PDF. Ανακτήθηκε την 2008-11-29.
36.↑ Sárneczky, K (Μάρτιος 2002). "'Global' Tectonism on Asteroids?". 33rd Annual Lunar and Planetary Science Conference. Bibcode: 2002LPI....33.1381S. http://www.lpi.usra.edu/meetings/lpsc2002/pdf/1381.pdf. Ανακτήθηκε την 2008-10-22.
37.↑ Gazetteer of Planetary Nomenclature: Ida. United States Geological Survey Astrogeology Research Program (ανακτήθηκε 2009-04-15 )

38.↑ Greeley, Ronald; Batson, Raymond M. (2001). The Compact NASA Atlas of the Solar System. Κέιμπριτζ, ΗΒ: Εφημερίδα του Πανεπιστημίου του Κέιμπριτζ. ISBN 052180633X.
39.↑ Lewis, John S. (1996). Mining the Sky: Untold Riches from the Asteroids, Comets, and Planets. Ρέντινγ, MA: Addison-Wesley. ISBN 0201479591.
40.↑ Hurford, Terry A. (Ιούνιος 2000). "Tidal Evolution by Elongated Primaries: Implications for the Ida/Dactyl System". Geophysical Research Letters 27 (11): 1595–1598. doi:10.1029/1999GL010956. Bibcode: 2000GeoRL..27.1595H